Альтернативные источники энергии нашей страны. Виды альтернативной энергетики. Справка. Энергия из атомов

Для решения проблемы ограниченности ископаемых видов топлива исследователи во всем мире работают над созданием и внедрением в эксплуатацию альтернативных источников энергии. И речь идет не только о всем известных ветряках и солнечных батареях. На смену газу и нефти может прийти энергия от водорослей, вулканов и человеческих шагов. Recycle выбрал десять самых интересных и экологически чистых энерго-источников будущего.


Джоули из турникетов

Тысячи людей каждый день проходят через турникеты при входе на железнодорожные станции. Сразу в нескольких исследовательских центрах мира появилась идея использовать поток людей в качестве инновационного генератора энергии. Японская компания East Japan Railway Company решила оснастить каждый турникет на железнодорожных станциях генераторами. Установка работает на вокзале в токийском районе Сибуя: в пол под турникетами встроены пьезоэлементы, которые производят электричество от давления и вибрации, которую они получают, когда люди наступают на них.

Другая технология «энерго-турникетов» уже используется в Китае и в Нидерландах. В этих странах инженеры решили использовать не эффект нажатия на пьезоэлементы, а эффект толкания ручек турникета или дверей-турникетов. Концепция голландской компании Boon Edam предполагает замену стандартных дверец при входе в торговые центры (которые обычно работают по системе фотоэлемента и сами начинают крутиться) на двери, которые посетитель должен толкать и таким образом производить электроэнергию.

В голландском центре Natuurcafe La Port такие двери-генераторы уже появились. Каждая из них производит около 4600 киловатт-час энергии в год, что на первый взгляд может показаться незначительным, но служит неплохим примером альтернативной технологии по выработке электричества.


Водоросли отапливают дома

Водоросли стали рассматриваться в качестве альтернативного источника энергии относительно недавно, но технология, по мнению экспертов, очень перспективна. Достаточно сказать, что с 1 гектара площади водной поверхности, занятой водорослями, в год можно получать 150 тысяч кубометров биогаза. Это приблизительно равно объёму газа, который выдает небольшая скважина, и достаточно для жизнедеятельности небольшого поселка.

Зеленые водоросли просты в содержании, быстро растут и представлены множеством видов, использующих энергию солнечного света для осуществления фотосинтеза. Всю биомассу, будь то сахара или жиры, можно превратить в биотопливо, чаще всего в биоэтанол и биодизельное топливо. Водоросли — идеальное эко-топливо, потому что растут в водной среде и не требуют земельных ресурсов, обладают высокой продуктивностью и не наносят ущерба окружающей среде.

По оценкам экономистов, к 2018 году глобальный оборот от переработки биомассы морских микроводорослей может составить около 100 млрд долларов. Уже существуют реализованные проекты на «водорослевом» топливе — например, 15-квартирный дом в немецком Гамбурге. Фасады дома покрыты 129 аквариумами с водорослями, служащими единственным источником энергии для отопления и кондиционирования здания, получившего название Bio Intelligent Quotient (BIQ) House.


«Лежачие полицейские» освещают улицы

Концепцию выработки электроэнергии при помощи так называемых «лежачих полицейских» начали реализовывать сначала в Великобритании, затем в Бахрейне, а скоро технология дойдет и до России. Все началось с того, что британский изобретатель Питер Хьюс создал «Генерирующую дорожную рампу» (Electro-Kinetic Road Ramp) для автомобильных дорог. Рампа представляет собой две металлические пластины, немного поднимающиеся над дорогой. Под пластинами заложен электрический генератор, который вырабатывает ток всякий раз, когда автомобиль проезжает через рампу.

В зависимости от веса машины рампа может вырабатывать от 5 до 50 киловатт в течение времени, пока автомобиль проезжает рампу. Такие рампы в качестве аккумуляторов способны питать электричеством светофоры и подсвечиваемые дорожные знаки. В Великобритании технология работает уже в нескольких городах. Способ начал распространяться и на другие страны — например, на маленький Бахрейн.

Самое удивительное, что нечто подобное можно будет увидеть и в России. Студент из Тюмени Альберт Бранд предложил такое же решение по уличному освещению на форуме «ВУЗПромЭкспо». По подсчетам разработчика, в день по «лежачим полицейским» в его городе проезжает от 1000 до 1500 машин. За один «наезд» автомобиля по оборудованному электрогенеретором «лежачему полицейскому» будет вырабатываться около 20 ватт электроэнергии, не наносящей вред окружающей среде.


Больше, чем просто футбол

Разработанный группой выпускников Гарварда, основателей компании Uncharted Play, мяч Soccket может за полчаса игры в футбол сгенерировать электроэнергию, которой будет достаточно, чтобы несколько часов подпитывать LED-лампу. Soccket называют экологически чистой альтернативой небезопасным источникам энергии, которые нередко используются жителями малоразвитых стран.

Принцип аккумулирования энергии мячом Soccket довольно прост: кинетическая энергия, образуемая от удара по мячу, передается крошечному механизму, похожему на маятник, который приводит в движение генератор. Генератор производит электроэнергию, которая накапливается в аккумуляторе. Сохраненная энергия может быть использована для питания любого небольшого электроприбора — например, настольной лампы со светодиодом.

Выходная мощность Soccket составляет шесть ватт. Генерирующий энергию мяч уже завоевал признание мирового сообщества: получил множество наград, был высоко оценен организацией Clinton Global Initiative, а также получил хвалебные отзывы на известной конференции TED.


Скрытая энергия вулканов

Одна из главных разработок в освоении вулканической энергии принадлежит американским исследователям из компаний-инициаторов AltaRock Energy и Davenport Newberry Holdings. «Испытуемым» стал спящий вулкан в штате Орегон. Соленая вода закачивается глубоко в горные породы, температура которых благодаря распаду имеющихся в коре планеты радиоактивных элементов и самой горячей мантии Земли очень высока. При нагреве вода превращается в пар, который подается в турбину, вырабатывающую электроэнергию.

На данный момент существуют лишь две небольшие действующие электростанции подобного типа - во Франции и в Германии. Если американская технология заработает, то, по оценке Геологической службы США, геотермальная энергия потенциально способна обеспечить 50% необходимого стране электричества (сегодня ее вклад составляет лишь 0,3%).

Другой способ использования вулканов для получения энергии предложили в 2009 году исландские исследователи. Рядом с вулканическими недрами они обнаружили подземный резервуар воды с аномально высокой температурой. Супер-горячая вода находится где-то на границе между жидкостью и газом и существует только при определенных температуре и давлении.

Ученые могли генерировать нечто подобное в лаборатории, но оказалось, что такая вода встречается и в природе — в недрах земли. Считается, что из воды «критической температуры» можно извлечь в десять раз больше энергии, чем из воды, доведенной до кипения классическим образом.


Энергия из тепла человека

Принцип термоэлектрических генераторов , работающих на разнице температур, известен давно. Но лишь несколько лет назад технологии стали позволять использовать в качестве источника энергии тепло человеческого тела. Группа исследователей из Корейского ведущего научно-технического института (KAIST) разработала генератор, встроенный в гибкую стеклянную пластинку.

Т акой гаджет позволит фитнес-браслетам подзаряжаться от тепла человеческой руки — например, в процессе бега, когда тело сильно нагревается и контрастирует с температурой окружающей среды. Корейский генератор размером 10 на 10 сантиметров может производить около 40 милливат энергии при температуре кожи в 31 градус Цельсия.

Похожую технологию взяла за основу молодая Энн Макосински, придумавшая фонарик, заряжающийся от разницы температур воздуха и человеческого тела. Эффект объясняется использованием четырех элементов Пельтье: их особенностью является способность вырабатывать электричество при нагреве с одной стороны и охлаждении с другой стороны.

В итоге фонарик Энн производит довольно яркий свет, но не требует батарей-акуумуляторов. Для его работы необходима лишь температурная разница всего в пять градусов между степенью нагрева ладони человека и температурой в комнате.


Шаги по «умной» тротуарной плитке

На любую точку одной из оживленных улиц приходится до 50000 шагов в день. Идея использовать пешеходный поток для полезного преобразования шагов в энергию была реализована в продукте, разработанном Лоуренсом Кемболл-Куком, директором британской Pavegen Systems Ltd. Инженер создал тротуарную плитку, генерирующую электроэнергию из кинетической энергии гуляющих пешеходов.

Устройство в инновационной плитке сделано из гибкого водонепроницаемого материала, который при нажатии прогибается примерно на пять миллиметров. Это, в свою очередь, создаёт энергию, которую механизм преобразует в электричество. Накопленные ватты либо сохраняются в литиевом полимерном аккумуляторе, либо сразу идут на освещение автобусных остановок, витрин магазинов и вывесок.

Сама плитка Pavegen считается абсолютно экологически чистой: ее корпус изготовлен из нержавеющей стали специального сорта и переработанного полимера с низким содержанием углерода. Верхняя поверхность изготовлена из использованных шин, благодаря этому плитка обладает прочностью и высокой устойчивостью к истиранию.

Во время проведения летней Олимпиады в Лондоне в 2012 году плитку установили на многих туристических улицах. За две недели удалось получить 20 миллионов джоулей энергии. Этого с избытком хватило для работы уличного освещения британской столицы.


Велосипед, заряжающий смартфоны

Чтобы подзарядить плеер, телефон или планшет, необязательно иметь под рукой розетку. Иногда достаточно лишь покрутить педали. Так, американская компания Cycle Atom выпустила в свет устройство, позволяющее заряжать внешний аккумулятор во время езды на велосипеде и впоследствии подзаряжать мобильные устройства.

Продукт, названный Siva Cycle Atom, представляет собой легкий велосипедный генератор с литиевым аккумулятором, предназначенным для питания практически любых мобильных устройств, имеющих порт USB. Такой мини-генератор может быть установлен на большинстве обычных велосипедных рам в течение считанных минут. Сам аккумулятор легко снимается для последующей подзарядки гаджетов. Пользователь занимается спортом и крутит педали — а спустя пару часов его смартфон уже заряжен на 100 поцентов.

Компания Nokia в свою очередь тоже представила широкой публике гаджет, присоединяемый к велосипеду и позволяющий переводить кручение педалей в способ получегия экологически безопасной энергии. Комплект Nokia Bicycle Charger Kit имеет динамо-машину, небольшой электрический генератор, который использует энергию от вращения колес велосипеда и подзаряжает ей телефон через стандартный двухмиллиметровый разъем, распространенный в большинстве телефонов Nokia.


Польза от сточных вод

Любой крупный город ежедневно сбрасывает в открытые водоемы гигантское количество сточных вод , загрязняющих экосистему. Казалось бы, отравленная нечистотами вода уже никому не может пригодиться, но это не так — ученые открыли способ создавать на ее основе топливные элементы.

Одним из пионеров идеи стал профессор Университета штата Пенсильвания Брюс Логан. Общая концепция весьма сложная для понмания неспециалиста и построена на двух столпах — применении бактериальных топливных ячеек и установке так называемого обратного электродиализа. Бактерии окисляют органическое вещество в сточных водах и производят в данном процессе электроны, создавая электрический ток.

Для производства электричества может использоваться почти любой тип органического отходного материала - не только сточные воды, но и отходы животноводства, а также побочные продукты производств в виноделии, пивоварении и молочной промышленности. Что касается обратного электродиализа, то здесь работают электрогенераторы, разделенные мембранами на ячейки и извлекающие энергию из разницы в солености двух смешивающихся потоков жидкости.


«Бумажная» энергия

Японский производитель электроники Sony разработал и представил на Токийской выставке экологически чистых продуктов био-генератор, способный производить электроэнергию из мелко нарезанной бумаги. Суть процесса заключается в следующем: для выделения целлюлозы (это длинная цепь сахара глюкозы, которая находится в зеленых растениях) необходим гофрированный картон.

Цепь разрывается с помощью ферментов, а образовавшаяся от этого глюкоза подвергается обработке другой группой ферментов, с помощью которых высвобождаются ионы водорода и свободные электроны. Электроны направляются через внешнюю цепь для выработки электроэнергии. Предполагается, что подобная установка в ходе переработки одного листа бумаги размером 210 на 297 мм может выработать около 18 Вт в час (примерно столько же энергии вырабатывают 6 батареек AA).

Метод является экологически чистым: важным достоинством такой «батарейки» является отсутствие металлов и вредных химических соединений. Хотя на данный момент технология еще далека от коммерциализации: электричества вырабатывается достаточно мало - его хватает лишь на питание небольших портативных гаджетов.

На пороге XXI века человек все чаще стал задумываться о том, что станет основой его существования в новой эре. Люди прошли путь от первого костра до атомных электростанций, однако энергия была и остается главной составляющей жизни человека.

Существуют «традиционные» виды альтернативной энергии: энергия Солнца и ветра, морских волн и горячих источников, приливов и отливов. На основе этих природных ресурсов были созданы электростанции: ветряные, приливные, геотермальные, солнечные.

Сейчас, как никогда остро встал вопрос, о том, каким будет будущее планеты в энергетическом плане. Что ждет человечество - энергетический голод или энергетическое изобилие? В газетах и различных журналах все чаще и чаще встречаются статьи об энергетическом кризисе. Из-за нефти возникают войны, расцветают и беднеют государства, сменяются правительства. К разряду газетных сенсаций стали относить сообщения о запуске новых установок или о новых изобретениях в области энергетики. Разрабатываются гигантские энергетические программы, осуществление которых потребует громадных усилий и огромных материальных затрат.

Если в конце XIX века энергия играла, в общем, вспомогательную и незначительную роль в мировом балансе, то уже в 1930 году в мире было произведено около 300 миллиардов киловатт-часов электроэнергии. С течением времени - гигантские цифры, огромные темпы роста! И все равно энергии будет мало - потребности в ней растут еще быстрее.

Потому ныне перед всеми учеными мира стоит проблема нахождения и разработки новых альтернативных источников энергии. В данной работе будут рассмотрена классификация альтернативных источников энергии, способы нахождения новых видов топлива и опыт России и других зарубежных стран в изобретении и использовании энергосберегающих ресурсов.

1. Альтернативные источники энергии

К альтернативным источникам энергии относят энергию Солнца, земли, ветра, воздуха, атомную и биоэнергию.

Солнечная энергия

Солнце - центр нашей системы из 8 планет (не считая мелких, таких как Плутон, Церера и др.), является первичным и главным источником энергии в нашей системе планет. Являясь большим термоядерным реактором, выделяющим громадное количество энергии, оно согревает Землю, приводит в движение и верхние слои атмосферы, океанские течения и реки. Под воздействием солнечных лучей и благодаря фотосинтезу, на нашей планете вырастает около одного квадриллиона тонн растений, дающих в свою очередь жизнь, 10 триллионам тонн животных организмов. Благодаря совместному труду Солнца, воды и воздуха, за миллионы лет, на 3емле накоплены запасы углеводородов - угля, нефти, газа и пр., которые мы сейчас активно расходуем.

Для удовлетворения потребностей человечества в энергоресурсах, на сегодняшний день, требуется сжечь около десяти миллиардов тонн углеводородного топлива в год. Считается, что на 3емле имеется около шести триллионов тонн различных углеводородов. Если взять энергию, поставляемую на нашу планету Солнцем за год, и перевести в углеводородное топливо, которое мы сжигаем, то получим около ста триллионов тонн, что в десять тысяч раз превышает необходимый нам объем энергоресурсов.

Для обеспечения потребностей человечества энергией на несколько веков хватит и сотой доли той энергии, которая доходит от Солнца до Земли за один год, и если мы сможем взять этот процент, то это бы решило многие проблемы с генерацией энергии на многие века вперед. Как взять этот столь необходимый для нас процент солнечной энергии в теории понятно, дело остается за более совершенными технологиями преобразования энергий. Среди возобновляемых источников энергии, солнечная радиация по объемам ресурсов, распространенности, доступности и экологической чистоте наиболее перспективна.

В начале 20 века многие ученые мира, всерьез задумывались об использовании солнечной энергии. Наш соотечественник, основатель теоретической космонавтики К.Э. Циолковский, во второй части своей книги: "Исследования мировых пространств реактивными приборами" писал следующее: "Реактивные приборы завоюют людям беспредельные пространства и дадут солнечную энергию, в два млрд. раз большую, чем та, которую человечество имеет на Земле".

Альберт Эйнштейн основатель всемирно известной теории относительности, в 1921 году был удостоен Нобелевской премии за объяснение законов внешнего фотоэффекта. В 1905 году была опубликована его работа, в которой, опираясь на гипотезу Планка, Эйнштейн описал как именно и в каких количествах кванты света выбивают из металла электроны. Применить данную гипотезу на практике впервые удалось советским физикам в 30-е годы под руководством знаменитого академика А.Ф. Иоффе.

В Физикотехническом институте, были разработаны и созданы первые сернисто-талиевые фотоэлементы, правда, КПД этих элементов не дотягивал до 1%.

Позднее в 1954 году американскими учеными Пирсоном, Фуллерром и Чапином был запатентован первый элемент с КПД порядка 6%. В 70-х годах КПД солнечных фотоэлементов приближался к 10%, но их производство было довольно дорого и экономически неоправданно, посему использование солнечных батарей в основном ограничивалось космонавтикой. Для производства элементов, требовался кремний (Si, силициум) высокой отчистки и особого качества, в сравнении со стоимостью сжигаемых углеводородов, переработка кремния виделась дорогой и неоправданной, хотя данный элемент таблицы Менделеева в изобилии располагается на пляжах в виде песка (SiO 2). Вследствие чего, исследования по разработке технологий в области солнечной энергетики, были урезаны в финансировании или и вовсе свернуты.

К началу 21 века КПД солнечных батарей удалось увеличить до 20%. Несложно догадаться, почему человечество отступило от разработки солнечной энергии. В середине прошлого века наша цивилизация разгадала тайну ядерной энергии, и все силы науки были брошены на поиски новых способов обогащения урана и создание более совершенных ядерных реакторов, в ущерб технологиям для выработки кремния и разработки новых видов солнечных элементов.

Тем не менее, все это выглядит немного странно, учитывая тот факт, что более прогрессивные технологии получения силициума давно существуют. Еще в 1974 году фирмой Siemens (Германия) была разработана технология получения кремния с помощью карботермического цикла, что понизило себестоимость процесса на порядок. Однако для данной технологии требуется уже не обычный песок, а так называемые особо чистые кварцы, запасы которых в нашей стране самые крупные, что, несомненно, выгодно для России, ведь имеющихся запасов хватит на всех.

Солнечные батареи как форма использования солнечной энергии

Солнце - мощнейший источник энергии в нашей солнечной системе. Давление в его внутренней части порядка 100 миллиардов атмосфер, а температура достигает 16 миллионов градусов. До Земли доходит лишь одна двухмиллиардная доля всего излучения. Но даже эта малая часть превосходит по мощности все земные источники энергии (в том числе и энергию земного ядра). Использование солнечной энергии сегодня стало распространенным явлением, а солнечные батареи обретают все большую популярность.
Первые солнечные батареи были использованы в 1957 году при покорении космоса. Их установили на спутник для преобразования солнечной энергии в электрическую, которая была необходима для работы спутника. При создании солнечных батарей используют полупроводниковые материалы, как правило, кремний.

Принцип работы солнечных элементов построен на фотоэлектрическом эффекте - преобразовании энергии света в электричество. Когда солнечная энергия попадает на неоднородный полупроводник (неоднородность может достигаться различными путями, например легированием), в нем создаются неравновесные носители заряда обоих типов. При подключении данной системы к внешней цепи можно «собирать» электроны, соответственно создавая электрический ток. Есть много эффектов, которые отрицательно сказываются на величине получаемого тока (например, частичное отражение солнечных лучей или их рассеяние), поэтому исследовательская работа по созданию наиболее подходящего материала очень актуальна на сегодняшний день.
Солнечные батареи - это большие по площади модули, которые собираются из отдельных элементов. Эти элементы - это обычно небольшие пластины (размеры которых в среднем 130×130мм), с припаянными к ним контактами.
Этот вид энергии абсолютно экологичен, так как нет никаких ядовитых и опасных выбросов в атмосферу, они не загрязняют воду или почву, у них даже отсутствует опасное излучение. К тому же это весьма надежный источник альтернативной энергии - по расчетам ученых солнце будет светить еще несколько миллионов лет. К тому же, энергия солнца абсолютна бесплатна. Другое дело, конечно, что создание самого солнечного элемента является довольно дорогой процедурой.

Но у данного вопроса есть и обратная сторона. Притом, что энергия солнца бесплатна и огромна, она непостоянна. Работа солнечных батарей сильно зависит от погоды. В пасмурную погоду количество вырабатываемого электричества падает в разы, а ночью и вовсе прекращается. Пытаясь как-то справиться с этим, ученые разработали всевозможные аккумуляторы. Но при нагрузке таких огромных солнечных станций, аккумуляторы не выдерживают больше часа. Поэтому использование солнечных батарей возможно только совместно со стабильным источником электроэнергии.
Солнечные батареи распространены в тропических и субтропических регионах. Количество солнечных дней в странах этих регионов максимально, следовательно, максимально и количество вырабатываемого электричества.

Энергию солнца могут использовать не только крупные компании, но и владельцы частных домов. Например в Германии солнечные батареи устанавливаются на крыши домов, что позволяет хозяевам экономить порядка 50% всех затрат на электроэнергию. Учитывая, что стоимость электроэнергии в этой стране довольно высока. В солнечные дни количество перерабатываемой энергии может превышать необходимое. В той же Германии государство скупает эти излишки у частных лиц и перепродает скупленную электроэнергию в ночное время по более низкой цене, чем стимулирует интерес населения к установке солнечных батарей.
В самых безоблачных регионах строятся целые гелиоэлектростанции (ГЕЭС). Принцип их работы несколько отличается от солнечных батарей. Эти солнечные установки концентрируют солнечную энергию и используют ее для приведения в действие турбин, тепловых машин и т.д. В качестве примера можно привести солнечную башню в Испании. Множество зеркал направляют солнечные лучи на ее верхнюю часть, разогревая находящуюся там воду до 250 градусов. Это выгодно по многим параметрам.
Еще одним преимуществом солнечных батарей можно считать их мобильность. Небольшой элемент в условиях яркого солнечного освещения может вырабатывать электроэнергию достаточную, например, для подзарядки сотового телефона или маломощного ноутбука.

Энергия земли

Планета Земля - самый удивительный и загадочный объект, будоражащий умы людей на протяжении многих веков. Она дает жизнь, делясь теплом, водой, пищей, и отбирает ее, обрушиваясь ураганами, землетрясениями, потопами или извержениями вулканов. Для выживания человеку необходима энергия и он берет ее, разворовывая недра нашей планеты: добывает тоннами нефть, уголь, вырубает леса и т.д. Несмотря на то, что наша планета очень богата, ее запасы все же небезграничны. Эта проблема тревожит умы глав государств и научных работников уже не первый год - постоянно ищутся все новые источники альтернативной энергии.

Одним из возможных решений этой насущной проблемы стала геотермальная энергетика, то есть использование внутреннего тепла земли и превращение его в электроэнергию.

Приблизительная температура земного ядра 5000°С, а давление там достигает 361 ГПа. Такие невероятно высокие значения достигаются вследствие радиоактивности ядра. Оно разогревает близлежащие пласты породы, создавая тем самым горячие потоки, размером с континенты. Они медленно поднимаются из глубины земных недр, заставляя двигаться континенты, провоцируя извержения вулканов и землетрясения.

При удалении от ядра температура постоянно уменьшается, но жар при извержении вулканов говорит о том, что даже «низкая» для ядра температура, просто колоссальна. Тепловая энергия земли огромна, но загвоздка в том, что современные технологии пока не позволяют использовать ее если не полностью, то хотя бы наполовину.

В некотором смысле земное ядро можно считать вечным двигателем: есть сильное давление (а оно благодаря гравитации будет всегда), значит есть высокая температура и атомные реакции. Но пока не создано ни технологий, ни материалов, которые смогли бы выдержать столь жесткие условия и позволить добраться до ядра. Сегодня мы можем использовать тепло приповерхностных слоев, температура которых несравнима с тысячами градусов, но вполне достаточна для выгодного ее использования.
Существует несколько способов использования геотермальной энергии. Например, можно использовать горячие подземные воды для обогрева жилых домов, всевозможных предприятий или учреждений. Но больший интерес вызывает использование тепловой энергии для преобразования ее в электроэнергию.

Геотермальную энергию различают по форме, в которой она вырывается из-под земли:

  • «Сухой пар» . Это пар, вырывающийся из-под земли без капелек воды и примесей. Его очень удобно использовать для вращения турбин, вырабатывающих электрическую энергию. А конденсированная вода, как правило, остается довольно чистой и ее можно возвращать обратно в землю или даже в ближайшие водоемы.
  • «Влажный пар» . Это смесь воды и пара. В данном случае задача несколько усложняется, поскольку приходится сначала отделить пар от воды, а лишь потом его использовать. Капли воды могут повредить турбины.
  • «Система с бинарным циклом» . Из-под земли вырывается просто горячая вода. Используя эту воду, изобутан переводят в газообразное состояние. А затем используют изобутановый пар для вращения турбин. Эту воду можно использовать для непосредственного обогрева помещений - централизованное теплоснабжение.

Недостаток таких установок в том, что они привязаны географически к районам геотермальной активности, которые расположены совсем неравномерно по поверхности земли. В России источники геотермальной энергии расположены на Камчатке, Курильских островах и Сахалине - экономически плохо развитых регионах. Поскольку в них слабо развита инфраструктура, они малонаселенны, обладают сложным рельефом местности и высокой сейсмической активностью, эти районы являются экономически невыгодными для создания там тепловых станций. Но ведь это не может стать ограничением тепловой энергии нашей планеты.
В середине 19 века британский физик Уильям Томсон заложил фундамент технологии теплового насоса. Принцип его работы можно объяснить схематично в виде трех замкнутых контуров.

Во внешнем контуре циркулирует так называемый теплоноситель, который поглощает тепло окружающей среды. Обычно этот контур представляет собой трубопровод, который максимально приближен к источнику внешнего тепла (грунт, река, море и т.д.) с циркулирующим антифризом (незамерзающей жидкостью).

Во втором контуре циркулирует вещество, которое испаряется благодаря теплу вещества первого контура, и конденсируется, отдавая тепло веществу последнего третьего контура. Во втором контуре в качестве испаряемого вещества используется хладагент (вещество с низкой температурой испарения). В этот же контур встроены конденсатор, испаритель и устройства, меняющие давление хладагента. Третий контур и является нагревательным элементом, который передает тепло помещениям.
Имеется еще один проект, преобразующий тепло земной коры в электроэнергию. Этот проект разработали ученые одной из национальных лабораторий министерства энергетики США. Технология заключается в бурении двух неглубоких скважин глубиной около четырех километров, которые доходят до твердых скальных пород. Далее скалы дробятся при помощи подземных взрывов, увеличивая глубину скважины. Одна из скважин наполняется водой, где она нагревается до 176 градусов. Притом, что температура сравнительно небольшая, ее вполне хватает для обогрева помещений и выработки электроэнергии. Затем, вода поднимается по другой скважине (ее стараются располагать на значительном удалении от первой) и поступает на электростанцию.

Преимуществом данного метода стала его независимость от геотермальной активности местности - он пригоден для установки почти везде.
Уже достаточно давно умы ученых будоражит еще один вид энергии Земли - энергия магнитного поля. На сегодняшний день не создано ни одного реально существующего проекта. Но огромный потенциал магнитного поля постоянно подталкивает на изобретение все более новых и более хитрых приборов. Одним из которых является электромобиль Тесла. Принцип работы этого прибора так и остался для всех загадкой.

Никола Тесла заменил бензиновый двигатель обычного автомобиля стандартным электромотором переменного тока мощностью в 80л.с., у которого отсутствовали видимые внешние источники питания. Автомобиль мог развивать скорость до 150 км/ч. По заявлению самого ученого машина работала благодаря «эфиру, который вокруг нас!». Современные исследователи полагают, что физик использовал в своем генераторе энергию магнитного поля нашей планеты. Он мог настраивать свою высокочастотную схему переменного тока на резонансную частоту 7,5 Гц. Но это всего лишь догадки.
Такие альтернативные источники энергии, как тепловая или магнитная, вскоре станут не фантазиями или гипотезами, а необходимостью. Ну а благодаря своим преимуществам: высокой экологичности, независимости от местоположения и погодных или климатических условий, низким уровнем затрат на производство и, конечно же, неисчерпаемости, эти источники энергетики становится весьма перспективными.

Энергия ветра Начало формы

Воздух - это ветер, один из альтернативных источников энергии на нашей планете.

Современность определяет ветер, как поток воздуха, движущийся вдоль земной поверхности со скоростью свыше 0,6 м/с. Он возникает из-за неравномерного распределения атмосферного давления, которое постоянно меняется, смещая огромные пласты воздуха из зоны высокого давления в зону низкого. В древности же обо всех этих хитрых определениях не имелось ни единого представления, но это не помешало древним людям научиться использовать энергию ветра в своих целях.

Еще до нашей эры умелые египтяне переплывали Нил на первых парусных лодках. В итоге это стало первым шагом в развитии парусного дела. Не менее изобретательными оказались и викинги. Их боевые парусные корабли, подгоняемые сильными порывами ветра, превосходили по скорости и легкости все корабли Западной Европы, наводя страх и ужас на местное население. Создание первых ветряных мельниц в 12 веке привело к рождению первого печеного хлеба, без которого невозможно представить себе ни один современный стол.

Использование ветряной энергии нашло большое применение в Голландии. Эта страна часто затапливается, поскольку находится ниже уровня моря, и использование энергии ветра в 14 веке для откачки воды с полей позволило ей войти в список самых богатых стран на то время. Впоследствии другие страны Европы стали использовать такой альтернативный источник энергии для достижения обратного эффекта - подачи воды на засушливые поля.

К 19 веку ветряки стали уже привычным делом на людей. К 1900 году в одной только Дании насчитывалось больше двух тысяч ветряных мельниц. А создание первой ветряной мельницы, преобразующей ветер в электроэнергию, стало началом нового витка в истории современной энергетики - ветроэнергетики.

Ветроэнергетика стала весьма перспективной, потому что ветер является возобновляемым источником энергии. Развитие данной отрасли энергетики идет очень активно: к 2008 году общая установленная мощность всех ветрогенераторов составила 120 гигаватт. Поскольку мощность ветрогенератора зависит от площади лопасти генератора, имеется тенденция к увеличению их размеров, и эти сооружения мельницами не назовешь - теперь это турбины.

Большое распространение данный вид энергетики получил в США. К середине 20 века там было построено несколько сотен тысяч турбин. С течением времени ветряные фермы стали весьма распространенным явлением в ветряной Калифорнии, да и по всей территории штатов, а после выхода в свет закона об обязательной скупке коммунальными предприятиями лишней электроэнергии, полученной из ветра, у рядовых граждан, эта область стала привлекательной и материально.

Важным является экологический аспект ветроэнергетики. По данным Global Wind Energy Council к 2050 году эта отрасль поможет уменьшить ежегодные выбросы углекислого газа (СО 2) на 1,5 млрд. тонн. Турбины занимают совсем небольшую площадь ветряной фермы (порядка 1%), следовательно, остальная площадь открыта для сельского хозяйства. Это имеет большое значение в небольших густонаселенных странах.
Значение ветроэнергетики возросло в 1973 году, когда ОПЕК ввело эмбарго на добычу нефти и ежегодно стало отслеживать ее количество. Стоимость на нефть возросла в разы, заставив государства изучать и развивать альтернативные источники энергии. С каждым годом стоимость технологии ветряной электродобычи уменьшается, увеличивая долю ветроэнергетики в общем объёме. На сегодняшний день этот вклад по всему миру составляет всего 2%, но с каждой минутой эта цифра растет.

Энергия воды

Вода - источник жизни на земле. Это одно из самых уникальных и удивительных явлений на нашей планете, обладающее множеством уникальных свойств, использование которых может быть очень выгодно и полезно для человека.

Энергия воды - один из первых источников энергии, который люди научились использовать в своих целях. Так принцип работы первых речных мельниц прост и в то же время гениален: движущийся поток воды вращает колесо, преобразуя кинетическую энергию воды в механическую работу колеса. По сути, все современные гидроэлектростанции работают аналогично, только с одним важным дополнением: далее механическая энергия колеса преобразуется в электрическую.

Энергию воды грубо можно разделить на три типа по ее виду, в котором она преобразовывается:

1. Энергия приливов и отливов . Явление отлива очень интересно и долгое время оно никак не могло быть объяснено. Большие массивные (и разумеется близкие к Земле) космические объекты, такие как Луна или Солнце, действием своей гравитации приводят к неравномерному распределению воды в океане, создавая «горбы» из воды. Из-за вращения земли начинается движение этих «горбов» и их перемещение к берегам. Но из-за того же вращения Земли, положение океана относительно Луны изменяется, уменьшая тем самым действие гравитации.

Во время прилива заполняются специальные резервуары, располагающиеся на береговой линии. Резервуары образуются благодаря дамбам. Во время отлива вода начинает свое обратное движение, которое и используется для вращения турбин и преобразования энергии. Важно, чтобы разница высот во время прилива и отлива была как можно больше, иначе подобная станция просто не сможет себя оправдывать. Поэтому приливные электростанции создаются, как правило, в узких местах, где высота приливов достигает хотя бы 10м. Например, приливная станция во Франции в устье реки Ранс.

Но такие станции имеют и свои минусы: создание дамбы приводит к увеличению амплитуды приливов со стороны океана, а это влечет за собой затопление суши соленой водой. Как следствие - изменение флоры и фауны биологической системы, причем не в самую лучшую сторону.
2. Энергия морских волн. Несмотря на то, что природа этой энергии весьма схожа с энергией приливов и отливов, ее все же принято выделять в отдельную ветвь. Данный вид энергии обладает довольно высокой удельной мощностью (приблизительная мощность волнения океанов достигает 15 кВт/м). Если высота волны будет около двух метров, то это значение может увеличиться до 80 кВт/м. Перевести всю энергию волнения в электрическую не удается, но все же коэффициент преобразования довольно высок - 85%.
На сегодняшний день использование энергии морских волн не особо распространено из-за ряда сложностей, возникающих при создании установок. Пока эта сфера находится только на стадии экспериментальных исследований.
3. Гидроэлектростанции . Этот вид энергии стал доступным для человека благодаря совместной «работе» трех стихий: воды, воздуха и, конечно же, солнца. Солнце испаряет с поверхности озер, морей и океанов воду, образуя облака. Ветер перемещает газообразную воду к возвышенным областям, где она конденсируется и, выпадая в виде осадков, начинает стекать обратно к своим первоисточникам. На пути этих потоков ставятся гидроэлектростанции, которые перехватывают энергию падающей воды и преобразуют ее в электрическую. Мощность, вырабатываемая станцией, зависит от высоты падения воды, поэтому на ГЭС стали создаваться дамбы. Они так же позволяют регулировать величину потока. Создание такого огромного сооружения стоит очень дорого, но ГЭС полностью себя окупает благодаря неисчерпаемости используемого ресурса и свободного доступа к нему.
У данного типа энергии, по аналогии с остальными, имеются как плюсы, так и минусы. Так же как в случае использования энергии приливов, создание ГЭС приводит к затоплению большой площади и нанесению непоправимого ущерба местной фауне. Но даже с учетом этого обстоятельства можно говорить о высокой экологичности ГЭС: они наносят только локальный ущерб, не загрязняя атмосферу Земли. В попытках уменьшить ущерб, наносимый станциями, разрабатываются все более новые методы их работы, постоянно совершенствуется конструкция самих турбин.

Одним из предложенных методов стало «накачивание» аккумуляторов. Вода, прошедшая через турбины не утекает дальше, а накапливается в больших резервуарах. Когда нагрузка на ГЭС становится минимальной, за счет энергии атомной или тепловой станции сохраненная вода перекачивается обратно вверх и все повторяется. Этот метод выигрывает как по экологическим, так и по экономическим показателям.
Еще одну интересную область использования водной энергии придумали эксперты Комиссии по атомной энергетике в Гренобле, Франция. Они предлагают использовать энергию падающего дождя. Каждая падающая капля, попадая на пьезокерамический элемент, воздействует на него физически, что приводит к возникновению электрического потенциала. Далее электрический заряд видоизменяется (так же как в микрофонах электрический сигнал преобразуется в колебания).

Благодаря многообразию своих форм, вода обладает поистине громадным энергетическим потенциалом. На сегодняшний день гидроэнергетика уже весьма развита и составляет 25% от мирового производства электроэнергии, а, учитывая темпы ее развития можно смело говорить, что она является весьма перспективным направлением.

Атомная энергия Начало формы

В конце 20 века проблема поиска альтернативных источников энергии стала весьма актуальной. Несмотря на то, что наша планета поистине богата природными ископаемыми, такими как нефть, уголь, древесина и т.д., все эти богатства исчерпаемые. Поэтому приходится искать все более новые и совершенные источники энергии.

На протяжении долгого времени человечество находило те или иные варианты решения вопроса альтернативных источников энергии, но настоящим прорывом в истории энергетики стало появление ядерной энергии.

Ядерная теория прошла долгий путь развития, прежде чем люди научились применять ее в своих целях. Все началось еще в 1896 году, когда А.Беккерель зарегистрировал невидимые лучи, которые испускала урановая руда, и которые обладали большой проникающей способностью. В дальнейшем это явление получило название радиоактивности.

История развития ядерной энергии содержит в себе несколько десятков выдающихся фамилий, в том числе и советских физиков. Завершающим этапом развития можно назвать 1939 год - когда Ю.Б.Харитон и Я.Б.Зельдович теоретически показали возможность осуществления цепной реакции деления ядер урана-235. Далее развитие ядерной энергетики шло семимильными шагами. По самым приблизительным подсчетам энергию, которая выделяется при расщеплении 1кг урана, можно сравнить с энергией, которая получается при сжигании 2500000кг каменного угля.

В период Второй мировой войны все исследования были перенаправлены в военную область. Первым примером ядерной энергии, который человек смог продемонстрировать всему миру, стала атомная бомба, потом водородная.

Лишь спустя годы научное сообщество обратило свое внимание на более мирные области, где применение ядерной энергии могло бы стать действительно полезным. Так начался рассвет самой молодой области энергетики. Стали появляться атомные электростанции (АЭС), причем первая в мире АЭС была построена в городе Обнинске Калужской области.

На сегодняшний день насчитывается несколько сотен атомных электростанций по всему миру. Развитие ядерной энергетики происходило невероятно стремительно. Меньше чем за 100 лет она смогла достигнуть сверхвысокого уровня технологического развития. То количество энергии, которое выделяется при делении ядер урана или плутония, несравнимо велико - это сделало возможным создание крупных атомных электростанций промышленного типа.

Эту энергию получают в результате цепной реакции деления ядер некоторых радиоактивных элементов. Обычно используется уран-235 или плутоний. Деление ядра начинается, когда в него попадает нейтрон - элементарная частица, не имеющая заряда, но обладающая сравнительно большой массой (на 0,14 % больше, чем масса протона). В результате образуются осколки деления и новые нейтроны, обладающие высокой кинетической энергией, которая в свою очередь активно преобразуется в тепло.
Данный вид энергии производят не только на АЭС. Он так же используется на атомных подводных лодках и атомных ледоколах.
Для нормального функционирования АЭС необходимо топливо. Как правило, это уран. Этот элемент имеет широкое распространение в природе, но при этом труднодоступен. В природе не существует залежей урана (как например нефти), он как бы «размазан» по всей земной коре. Самые богатые урановые руды, которые встречаются очень редко, содержат до 10% чистого урана. Уран обычно содержится в урансодержащих минералах в качестве изоморфно замещающего элемента. Но при всем это общее количество урана на планете грандиозно велико. Возможно, в ближайшем будущем новейшие технологии позволят увеличить процент добычи урана.

Столь мощный источник энергии, а значит и силы, не может не вызывать опасений. Постоянно ведутся споры о его надежности и безопасности. Трудно оценить какой ущерб наносит атомная энергетика окружающей среде. Однако если бы завтра на нашей планете закончились все запасы источников традиционной энергии, то ядерная энергетика, пожалуй, стала бы единственной областью, которая реально смогла бы заменить ее. Нельзя отрицать ее преимущества, но и не стоит забывать о возможных последствиях.

Биоэнергия

С понятием биоэнергии связанно немало путаницы.

По определению биоэнергетика - это отрасль альтернативной энергетики, то есть энергетики, которая считается возобновимой. Количество потребляемой энергии всем человечеством в год - просто огромно. Поэтому встает вопрос о том, сможет ли хоть какой-нибудь ресурс восстанавливаться соответственно скорости его потребления.

Биоэнергия - это совокупность целого спектра альтернативных источников энергии. Этот спектр объединяют одним общим понятием биомасса. По сути это результат жизнедеятельности всех живых организмов нашей планеты.

Ежегодно прирост биомассы на планете достигает 130 млрд. тонн сухого вещества. Это соответствует 660 000 ТВтч в год, притом, что мировой общественности требуется всего лишь 15000 ТВтч в год.
Сегодня более 99% автовладельцев используют топливо, производимое из нефти. И с каждым днем количество автомобилей на дорогах растет. Нефтяное топливо едва ли можно считать возобновляемым. Количество нефти с каждым годом неумолимо уменьшается, что приводит к повышению цены на нее. А поскольку экономика многих стран только развивается, то, несмотря на повышение цен, спрос на нефть все равно будет расти. Замкнутый круг, выходом из которого может стать биотопливо.
Долгое время биотопливо считалось неконкурентоспособным, потому что уступало ископаемому топливу и по производимой мощности и по сложности внедрения. Но постоянно развивающиеся технологии помогли решить эти проблемы. Биотопливо бывает разных типов:

  • жидким : метанол, этанол, биодизель;
  • газообразным: водород, сжиженный нефтяной газ (пропанобутановые фракции);
  • твердым : дрова, уголь, солома.

Недавно созданное жидкое биотопливо отличается своей экологичностью и доступностью, но помимо этого имеет и еще одно важное преимущество. Для перехода на жидкое биотопливо не понадобиться существенных изменений в структуре двигателей и оборудования. Само биотопливо представляет собой сырьё, получаемое при переработке, как правило, семян рапса, сои, стеблей сахарного тростника или кукурузы. Развивается еще много направлений получения органического топлива (например, из целлюлозы).

Природный газ, водород и подобное сырье нельзя отнести к возобновляемым источникам, поэтому их можно считать в определенной степени полумерой при переходе на биотопливо. К тому же, немало трудностей связанно с внедрением такой технологии. Например, водородный двигатель мог бы стать очень перспективным представителем своего «семейства», но для нормального функционирования автомобиля было бы необходимо закрепить целую цистерну на крыше авто, что не очень удобно. А в сжатом состоянии водород очень взрывоопасен.

На помощь пришли новейшие изобретения в области нанотехнологий - разрабатывается проект по созданию нанокапсул для хранения водорода и других взрывоопасных газов. Каждая нанокапсула (модифицированная нанотрубка) будет наполняться определенным количеством молекул газа и «закупориваться» фуллереном, что позволит разделить газ на порции, сделав его безопасным.

Гораздо проще обстоит ситуация с биодизельным топливом. Биодизельное топливо - это растительное масло переэтерифицированное метанолом (иногда может использоваться этанол или изопропиловый спирт). Реакция обычно проходит при нормальном давлении и температуре 60 °С. Растительные масла получают из самых различных представителей флоры (более 20 наименований), но лидером остается Рапс. Это маслянистое растение, которое легко выращивается в сельскохозяйственных условиях.
Но на этом преимущества биоэнергетики не заканчиваются. Помимо того, что она отвечает на актуальные вопросы современности о поиске альтернативных источников энергии и ее экологичности, важно отметить и материальный аспект.

Импорт нефти сильно сказывается на бюджете страны, учитывая постоянное повышение цены на нее. А биотопливо наоборот дешевеет с каждым днем. Отсюда можно утверждать, что экономия при переходе на биотопливо может оказаться весьма существенной.

В феврале 2006 года Евросоюзом был принят документ «Стратегия для биотоплива», который описывает рыночный, законодательный и исследовательский потенциал по увеличению использования биотоплива. Пусть сегодня процентная доля биотоплива в мировой топливной энергетике не достигает даже одного процента, с таким количеством преимуществ ситуация должна сильно измениться уже в ближайшее время.

2. Проблемы энергосбережения в России и за рубежом, пути их решения

Поистине эпохальное для России событие по итогам 2009 года это принятие Федерального закона «Об энергосбережении и повышении энергетической эффективности». За последние несколько лет его проект выдержал не одну редакцию, а бурные дебаты вокруг отдельных положений этого документа приобрели общенациональный масштаб, выплеснувшись за пределы профессионального сообщества и близких к законодательным органам кругов.

Энергорасточительность российских граждан не случайна. В первую очередь она обязана историческим и климатическим факторам. Другим весомым показателем является неразвитость законодательства по сравнению с обширнейшим законодательным опытом развитых стран. В России законотворчество в области энергосбережения только началось, инициативу на комиссии по модернизации и технологическому развитию экономики 30 сентября 2009 года проявил президент Дмитрий Медведев. А 11 ноября 2009 года Государственная дума приняла уже в третьем чтении федеральный закон «Об энергосбережении и повышении энергетической эффективности».

По своему действию он охватит всех и каждого, со времен принятия Налогового кодекса Госдума не рассматривала законопроект, столь масштабно затрагивающий быт буквально каждого гражданина и производство каждой компании. С точки зрения государства это крайне важные шаги. Конечная цель мероприятия - экономия топлива.

Энергопотребление в России достигает почти 1млрд тонн условного топлива. По оценке Минэнерго России, при снижении энергоемкости до европейского уровня наше потребление снизилось бы до 650 млн. тонн условного топлива.

Рассмотрим в качестве важнейших энергосберегающих направлений энергосберегающие лампочки и пассивные дома.

Энергосберегающие лампочки

Обычная лампа накаливания, которая повсеместно используется более сотни лет для освещения, хорошо греет и плохо светит. Ее световая отдача (то есть количество излучаемых люменов на единицу потребляемой мощности) крайне невысока. Аргумент в пользу альтернативных ламп, по большому счету, один - они дают столько же света при меньшем потреблении энергии и более длительном сроке службы.

Однако позиции Дмитрия Медведева по идее замены ламп накаливания на энергоэффективные получила весьма неоднозначное отражение в последующих действиях чиновниках.

С 1 января 2011 года запрещаются приобретение для государственных и муниципальных нужд любых ламп накаливания и оборот ламп накаливания от 100 Вт и выше. Далее законопроект декларирует, что с 1 января 2013 года может быть введен запрет для 75-ваттных лампочек, а с 1 января 2014 года и 25-ваттных. Шедевр «лампы 75 и 25 ватт, может, будут запрещены, а может, нет» не позволяет предприятиям даже в минимальном приближении сформировать свои инвестиционные программы. Нарастить импорт компактных люминесцентных ламп можно в одночасье, а для организации производства нужно как-никак иметь точный план на некоторый, хоть сколько-нибудь приличный срок. Можно с уверенностью прогнозировать, что при таком подходе российскому бизнесу будет крайне сложно инвестировать в новое производство.

Принятый в данной редакции закон приведет к очевидной лихорадке на рынке осветительных приборов, росту импорта дешевых компактных люминесцентных ламп и распространению мнимых фобий, связанных с вредностью и ядовитостью этих ламп.

Принятый закон требует от всех нас тотального перехода на приборный учет производимых, передаваемых и потребляемых энергетических ресурсов. Поскольку прежде чем, что-то сэкономить, надо знать, сколько ты потребил.

Два года отводится населению на тотальное оснащение счетчиками своей собственности - квартир, офисов, складов, заводских помещений. Оплата установки и замены счетчика возлагается на потребителей. Закон «Об энергосбережении» прямо затронет карман граждан. Помимо лампочек придется потратиться как минимум на счетчики энергии, газа, воды и тепла.

Учет электрической энергии, природного газа, тепла и воды технически и экономически решаемая проблема, имеющая наработанные стандартные решения. Однако парадоксальным образом существующая нормативная база сейчас препятствует населению переходить на учет ресурсов по счетчику. Особенно ярко это проявляется в учете воды. Устанавливая счетчик сейчас, гражданин вместо экономии затрат может получить возросшие расходы. До момента, когда все до единого жителя дома сделают то же самое, установивший счетчик будет умножать показания своего прибора на коэффициент, зависящий от числа прописанных в доме, потерь воды, расхода на общедомовые нужды, установленных нормативов потребления воды для жителей, не имеющих счетчиков, а также с учетом фактического потребления.

Чтобы избавиться от этой дикости, когда расходы во многом зависят не от потребления, а от числа прописанных в доме соседей и частоты их водных процедур, мало принять закон об энергосбережении и энергоэффективности. Потребуется тщательно и детально переписать постановление правительства РФ от 23 мая 2006 года №307 «О порядке предоставления коммунальных услуг гражданам».

Следующим шагом по снижению потребления тепла, воды и электрической энергии является перечень мероприятий, которые граждане должны провести сами. Пока списка в природе не существует. Сам перечень и принципы его внедрения установит правительство РФ. Утверждать же его будут региональные власти. Каждые пять лет требования к энергетической эффективности зданий, а, следовательно, и к серьезности проводимых мероприятий будут ужесточаться.

Данные мероприятия будут включать не только замену лампочек. Наверно, будет что-то по замене советских окон на современные стеклопакеты. По большому счету, это все, что доступно отдельно взятому гражданину в отдельно взятой квартире или офисе. Возможны мероприятия, связанные с утеплением и энергосбережением всего дома. В идеальном варианте грамотная управляющая компания сможет заключить энергосервисный договор, который позволит жильцам оплатить утепление фасада в рассрочку, за счет экономии от снижения потребления тепла. Вместо типовых технических решений и финансово-правовых механизмов улучшения действующего жилого фонда закон надеется на живое творчество масс и жэков.

К сожалению, законопроект практически не замечает и принципиальной разницы между новым строительством и уже построенными зданиями. В области нового строительства вполне может сработать «лампочкин» метод запрета, например, на холодный бетон и поощрения теплого пористого кирпича. Среди пяти главных принципов создания теплого и светлого дома числятся в основном те, что используются строителями с древнейших времен: хорошая теплоизоляция стен, крыши и фундамента, правильная ориентация окон по сторонам света и снижение теплопотерь через окна.

Работающий, эффективный закон об энергосбережении должен состоять из множества конструкций, которые вызовут интерес повышать энергоэффективность у сотни и тысячи рыночных субъектов. В российском законопроекте есть лишь их зачатки. Перечислим имеющиеся в законе стимулирующие меры.

Предприятие теперь сможет получить инвестиционный налоговый кредит (отсрочку уплаты налога на прибыль или регионального налога на период от одного года до пяти лет), если повысит энергетическую эффективность производства товаров, выполнения работ, оказания услуг.

В отношении объектов генерации представлены более строгие критерии. Создание объекта электрической или тепловой генерации с КПД более 57% или использующего возобновляемые источники энергии дает основание на налоговый кредит до 30% стоимости приобретаемого оборудования. В этот пока еще короткий перечень правительство России обязано внести другие объекты и технологии, имеющие высокую энергетическую эффективность.

Наше отставание в энергоэффективности означает, что мы должны, не теряя времени на поиск пути, использовать опыт других стран. В поддержку плана действий «группы восьми», куда входит и Россия, и по поручению лидеров стран «восьмерки» Международное энергетическое агентство (МЭА) подготовила специальный 586-страничный доклад «Перспективы энергетических технологий: сценарии и стратегии развития до 2050 года». МЭА уверено, что первостепенное значение для решения задач безопасной и экологически чистой энергетики, изменения климата и устойчивого развития имеет энергоэффективность. В своем докладе агентство привело множество требуемых для этого технологий, уже разработанных или близких к коммерциализации. Так, новые строения могут быть на 70% более эффективными по экономии энергии, новые системы освещения - на 30-60% более экономичными, тепловые потери через современные окна - в три раза меньше (все это в сравнении с типичными западными технологиями, а не типичными российскими).

Не утруждая себя более полной интеграцией, освоением международного опыта и более детальной проработкой соответствующих механизмов в российском законодательном поле, авторы законопроекта, видимо, понадеялись на действенность штрафов. Теперь за энергорасточительность уполномоченный орган сможет в массовом порядке налагать штрафы на граждан и организации.

По подсчетам некоторых аналитиков, 40% потребляемой в России энергии можно "высвободить" за счет простой экономии. Данный факт означает, что в нашей стране ежегодно тратится впустую, почти половина всей производимой энергии, и не зря нам присваивают статус, одной из самых энергорасточительных стран в мире. Количество впустую сожженной и потерянной энергии сравнимо с объемом всей экспортируемой из России нефти и нефтепродуктов. Каждый день, мы забываем или ленимся гасить свои осветительные приборы, а в масштабах всей страны это уже миллионы, если не миллиарды ламп.

Тем не менее, популярность использования энергосберегающих ламп в нашей стране набирает обороты, спрос на данный товар растет с каждым днем. Интерес к энергосберегающим светилам, вызван не только мировыми тенденциями к энергосбережению, но, и как показывает практика, это и в самом деле, очень практичное решение для освещения жилья.

Чем же отличаются энергосберегающие лампы, от традиционных ламп накаливания и является ли экономия электроэнергии единственной отличной характеристикой? Давайте попробуем разобраться в этих вопросах. Для начала рассмотрим, как устроена энергосберегающая лампа.

Энергосберегающая лампа состоит из 3 основных компонентов: цоколя, электронного блока, люминесцентной лампы.

Цоколь - предназначен для подключения лампы к осветительным прибором.

Электронный блок - (ЭПРА: электронный пускорегулирующий аппарат) обеспечивает запуск и дальнейшее поддержание процесса свечения люминесцентной лампы. Также Электронный блок преобразует поступающее напряжение 220В в напряжение, необходимое для работы люминесцентной лампы.

Люминесцентная лампа - собственно сама светящаяся часть лампы, наполнена инертным газом (аргоном) и парами ртути. Внутренние стенки лампы покрыты люминофорным покрытием.

Теперь ознакомимся с характеристиками энергосберегающих ламп.
Энергосберегающие лампы еще называют - Компактные Люминесцентные Лампы или сокращенно - КЛЛ.

Принцип работы у них аналогичен люминесцентным лампам: трубка в форме спирали или система дуговых трубок, наполненная инертным газом (аргоном или ксеноном) и парами ртути. Внутренние стенки лампы покрыты люминофором. Под действием высокого напряжения в лампе происходит движение электронов, они сталкиваются с атомами ртути, при этом образуется ультрафиолетовое излучение, которое, проходя сквозь люминофор, создает видимое нашему глазу свечение.

Исполнение ламп бывает различным, обычно их производят в виде трубок скрученных в спираль, но также компактные образцы, представлены в традиционных формах груши, свечи, шара или цилиндра. В последних образцах уже отсутствует электронный блок (ЭПРА), вернее он есть, просто инженеры умудрились всунуть его в цоколь.

Световой поток и мощность

Мощность указывается в ваттах, зачастую указан и эквивалент по мощности обычной лампочки, выдающей равное с энергосберегающей количества света. Например, если на энергосберегающей лампе написано 8W, то светить она будет как 40W лампочка накаливания. Ниже приведены среднестатистические значения мощности и соответствующего светового потока:
. 5W (25W) - 250 Lm;

  • 8W (40W) - 400 Lm;
  • 12W (60W) - 630 Lm;
  • 15W (75W) - 900 Lm;
  • 20W (100W) - 1200 Lm;
  • 24W (120W) - 1500 Lm;
  • 30W - 150W - 1900 Lm;

Температура света

Данный параметр будет не совсем правильно применять к люминесцентным лампам, так как он берётся из температуры нагретой нити в лампе накаливания, при этом температура измеряется в кельвинах (К). Температура нити накала традиционной лампочки равна 2700 К или 2427 С, при этом лампочка светит жёлтым светом.
Производители люминесцентных ламп придерживаются таких температурных диапазонов:

  • 2700 К - тёплый белый, соответствует свету от обычной лампочки накаливания;
  • 3300-3500 К - белый, не распространенный тип КЛЛ.
  • 4000-4200 К - холодный белый, лампа светит с слабым голубым оттенком. Мощность таких ламп рекомендуется выбирать больше, так как с такой температурой света маломощная лампа светит тускло.
  • 6000-6500К - дневной. Свечение ламп соответствует люминесцентным трубкам большой мощности.

Срок службы

Некоторые производители весьма не дешевых энергосберегающих ламп дают гарантии, на 12000-15000 часов работы их продукции. Лампы средней ценовой категории работают до 6000-10000 часов. Самый бюджетный вариант имеет срок службы 3000-4000 часов, что порой не соответствует действительности.

Коэффициент цветопередачи

Немаловажный коэффициент, чем он выше - тем лучше. Минимальное необходимое значение R=82. Если коэффициент ниже, чем 82, то создаётся эффект затуманенности, тени от такого света получаются не чёткие, оттенки предметов белого цвета - резкие с зелёноватыми или синими бликами. Глядя на лампочку с низким R, ловишь «зайчиков» в глазах, как от взгляда на сварку или на солнце.

Недостатки
К недостаткам можно отнести экологическую частоту, мы все прекрасно знаем что пары ртути - это яд, поэтому разбивать энергосберегающие лампы крайне не рекомендуется. Также нужно отметить, что бракованные компактные люминесцентные лампы - не редкость. Как правило, брак часто встречается в бюджетной категории товаров из-за не совершенства технологии производства, и большой процент дешёвых ламп умирает или начинает гореть тускло после первых 1000 часов работы.
Рекомендации
Для продления жизни энергосберегающих ламп, существуют определённые рекомендации по использованию, которые помогут продлить срок их службы. Как и для обычных ламп накаливания, на сроке жизни энергосберегающих сказываются частые включения и выключения, рекомендуется выключать лампочку не менее, чем после 5-10 минут работы.
Нельзя использовать энергосберегающие лампы с устройствами плавного старта или защитными блоками от скачков напряжения, которые используют с обычными лампами накаливания.

Также рекомендуется использовать энергосберегающие лампы с интегрированной системой плавного старта, так как такой вид включения продлит срок службы, на несколько тысяч часов. Первых пару минут лампа будет разогреваться, гореть не на полную мощность.
Экономия
Несмотря на изначально высокую цену, КЛЛ становиться более экономным и практичным решением. Произведем небольшой расчет перехода с обычных ламп накаливания на энергосберегающие:
Средний срок службы лампы накаливания около 1000 часов, аналогичной энергосберегающей - 6000 часов. Стоимость лампы накаливания - 15 рублей, энергосберегающей лампы - 120 рублей. Мощности ламп - 100 W и 20 W соответственно. Стоимость электроэнергии возьмём 2 рубля за 1 кВ/ч. За 6000 часов работы вам нужно 6 обычных ламп по 15 рублей, что равно 90 руб. За 6000 часов работы 6 лампочек по 100W сожгут 600 кВ/ч. энергии по 2 рубля, а это равно 1200 рублей. Итого получаем 90+1200=1290 рублей.

Энергосберегающая лампа стоит 120 руб. мощность составляет 20W, получается, что за 6000 часов работы она израсходует 120 кВ/ч на 240 рублей. Итого получаем 120+240=360 рублей.

Затраты получаются в 3,5 раза ниже. На практике этот показатель может быть как больше, так и меньше. А выводы делайте сами.

Пассивные дома

В Европе одним из основных трендов в развитии жилищного строительства становится создание пассивных домов. Основные их преимущества - минимальные затраты на отопление и здоровый микроклимат.

Пассивные дома - это достаточно новый стандарт для жилых строений. Благодаря утеплению и герметизации оболочки здания, затраты на отопление в нем ничтожно малы и нет нужды в привычных системах отопления. Тема пассивных домов так популярна сегодня в Германии и Австрии, что можно говорить о начале тихой домостроительной революции. За десятилетие там построено более 16 тыс. таких домов, причем в последние три-четыре года объемы растут экспоненциально. Требования к эффективности зданий в Германии постоянно ужесточаются, все чаще можно услышать, что через несколько лет пассивные дома могут стать обязательным общегерманским стандартом. Другие дома строить не будут вовсе.

В основе концепции пассивного дома очень простой эффект - автономное пространство, откуда не выходит тепло, можно отопить всего одной свечой. По аналогии: для дома-термоса, не имеющего тепловых потерь, даже в морозы будет достаточно тепла человека (в сутки человеческое тело выделяет 100 кВт тепловой энергии), солнечной энергии и энергии, выделяемой электроприборами.

В середине 1980-х годов германский инженер-физик Вольфанг Файст сделал математические расчеты дома-термоса, который не надо было бы обогревать. Главный результат расчетов в том, что такой пассивный дом оказался не математическим феноменом, а вполне реальной вещью. В частности, для эффективного утепления здания не нужны толстые кирпичные стены - достаточно слоя утеплителя менее полуметра.

Для проверки расчетов Файста в 1991 году в Дармштадте был построен первый пассивный дом. Детальное изучение подтвердило: здание действительно практически не потребляет тепла. Экспериментальный дом оказался всего на 25% дороже обычного здания, что вполне приемлемо для первого образца. В середине 1980-х независимо от Файста подобные расчеты сделал и российский физик Юрий Лапин. Однако отечественное градостроительное начальство посчитало, что такого не может быть в принципе, и идею даже проверять не стали.

Уже в первом пассивном здании доктора Файста были сформулированы пять основных принципов пассивного дома. Принцип первый - хорошая теплоизоляция всех частей здания. Для утепления стен, кровли и фундамента в климате центральной части Германии достаточно высокоэффективных утеплителей толщиной 30-40 сантиметров, что по тепловым свойствам эквивалентно кирпичной кладке толщиной шесть-восемь метров.

Второй - использование трех камерных стеклопакетов с низким показателем теплопередачи. Третий - особое внимание уделяется тонкой работе с так называемыми мостиками холода (стыки элементов, металлические части, углы здания), через которые тепло активно уходит. Например, металлические детали заменяются пластиковыми. Четвертый - проводится герметизация здания, и оно действительно становится термосом, не выпускающим воздух.

Правда, тут возникает проблема: люди дышат, а значит, необходима постоянная подача свежего воздуха. В советской практике предполагалось, что вентиляция помещений происходит естественно - через форточки и щели в окнах-дверях. Понятно, что для герметичного пассивного дома такой подход неприемлем, так как зимой здание будет терять тепло. Выход был найден в системе искусственной вентиляции с рекуператорами-теплообменниками. Это и есть пятый принцип возведения пассивного дома.

Свежий воздух подается в постройку по трубе, проходит через теплообменник, где забирает часть тепла у выходящего воздуха, имеющего комнатную температуру. В пассивных домах уровень рекуперации достигает 75%, а значит, выходящий воздух передает значительную часть энергии входящему. Зимой входящий воздух, если это необходимо, дополнительно подогревается. То есть система отопления в зданиях все-таки есть, но она воздушная и потребляющая мало энергии.

Результат: необходимость в отоплении пространства резко снижается. Критерием пассивного дома является потребление тепловой энергии - 15 кВт на один квадратный метр в год. Это в десять раз меньше, чем у рядовых германских зданий 1950-1980-х годов постройки и в 10-15 раз меньше, чем у советских домов, возведенных в 1970-х. Наконец, пассивные европейские дома потребляют в пять-семь раз меньше тепловой энергии, чем современные российские здания. Можно посчитать и по-другому: для отопления 30-метровой комнаты пассивного дома достаточно энергии 30 свечей.

В первом пассивном доме был еще один элемент, от которого впоследствии отказались. В нем попытались использовать энергию земли. Воздухозаборник ставился на некотором расстоянии от здания, и свежий воздух сначала шел по подземной трубе. Проходя под землей, где даже в сильные морозы температура остается плюсовой, воздух прогревался. Система работала, но после расчетов и экспериментов от данного элемента решили отказаться - слишком дорого.

Отказ этот весьма показателен. Суть пассивного дома в его экономичности. Немцы постоянно проверяли идеи на практике, различные способы экономии и производства энергии сравнивались по их цене за 1 кВт - в результате были приняты те принципы технологии «пассивный дом», которые дают максимальный финансовый эффект. Так, расчеты Института пассивных домов показали, что эффективнее вкладывать деньги в экономию энергии, чем в ее производство, что в Германии при строительстве дома с нуля выгоднее инвестировать средства в системы пассивного дома, чем, к примеру, в установку солнечных батарей.

Именно соображения экономии заставили немцев остановиться на базовом показателе затрат на отопление в 15 кВт на один метр в год. В принципе этот показатель можно снизить, но расчеты Института пассивных домов продемонстрировали, что именно при 15 кВт чисто математически достигается экстремум по показателю «эффект/затраты». Если пытаться снизить до нуля затраты на тепло, резко возрастают затраты на строительство и сложность системы.

Сегодня в мире строится немало экодомов, в том числе и довольно экзотических. В них применяются необычные материалы, солнечные батареи, ветряки и так далее. Есть стандарт домов так называемого нулевого потребления, когда здания полностью автономны, обеспечивают себя энергией. На фоне красивых картинок и ярких концептов пассивные дома могут показаться суховатыми. Но простота пассивных домов продуманная: из системы недрогнувшей рукой вычеркнуты все недостаточно практичные элементы. При этом система открытая, хозяин, естественно, может добавить в свой дом любой дополнительный элемент.

И именно этой эффективностью вызван успех пассивных домов на рынке. Если еще десять лет назад в год строились десятки таких зданий, то в последние три-пять лет, ежегодно возводятся уже тысячи домов. Львиная доля пассивных домов строится в Германии и Австрии. В Вене уже 20% новостроек возводится именно так. Начато строительство огромного муниципального района на 200 тыс. жилых «пассивных» единиц. В последние годы все больше пассивных домов появляется в Дании и Франции, созданы прототипы в Испании, Турции.

Для энергоэффективных домов разрабатываются специальные материалы: например, стекла с переменной управляемой прозрачностью и черепицу с фотоэлементами. Ведутся исследовательские проекты по адаптации системы "пассивный дом" для стран с различным климатом.

По пассивному дому можно безошибочно определять стороны света. На юг выходят большие панорамные окна. Окна на север намного меньше. Впрочем, использовать дом как компас можно только с учетом климата страны. Большие окна на юг отражают положение в Германии, где хочется зацепить больше солнечной энергии. Энергоэффективные дома в Южной Европе, наоборот, будут ориентироваться окнами на север, чтобы защититься от лишнего тепла.

Окна - это всегда предмет компромисса. С одной стороны, через них в комнаты попадает свет и солнечная энергия, а с другой - в них велики теплопотери, которые можно радикально снизить, только вставив очень дорогие стеклопакеты. В каждом случае размер окон и их параметры по тепло- и светопередаче рассчитывают архитекторы исходя из бюджета стройки.

В целом по архитектуре пассивные дома практически не отличаются от обычных, все интересное внутри. В таком доме имеется отдельная комната для инженерного оборудования, обычно в подвале. Множество труб с воздухом и водой запаковано либо в резиновые кожухи, либо в изоляцию с фольгой - немцы решительно борются с теплопотерями. В угол ставится рекуператор размером чуть больше холодильника. В трубу с входящим воздухом монтируются места для нескольких фильтров - как в автомобиле. Фильтры периодически меняются, что гарантирует чистый воздух в доме.

В каждом пассивном доме на стене висит небольшая коробочка - пульт управления климатом. Чаще всего там два регулятора: первый задает температуру, второй регулирует скорость подачи чистого воздуха. Так что на коробочке несколько положений типа «один дома» (не менее 300л воздуха в час), «вдвоем», «вечеринка».

По себестоимости пассивный дом несколько дороже обычного. В таком доме нет котла и системы отопления - это удешевляющий момент; зато есть расходы на дополнительное утепление, герметизацию, рекуперацию и так далее. Однако, 20 лет развития технологии не прошли даром: стоимость пассивного дома резко снизилась. Если первый пассивный дом доктора Файста был дороже обычного здания на 25%, то сегодня превышение - всего 5-10%. Впрочем, ожидать дальнейшего радикального снижения себестоимости вряд ли стоит. Немецкие архитекторы пассивных домов бьются за доли процента, экономя на длине труб или разыгрывая правильную ориентацию здания по сторонам света.

Дополнительные вложения в систему «пассивный дом» окупаются в среднем через семь-десять лет за счет пониженных платежей за тепло.

Выводы. Увеличивающееся загрязнение окружающей среды, нарушение теплового баланса атмосферы постепенно приводят к глобальным изменениям климата. Дефицит энергии и ограниченность топливных ресурсов с всё нарастающей остротой показывают неизбежность перехода к использованию нетрадиционных, альтернативных источников энергии. Они экологичны и возобновляемы, основой их служит энергия Солнца и Земли, воды и воздуха.

Неоспорима роль энергии в поддержании и дальней-шем развитии цивилизации. Сегодня активно проводятся исследования всех возможных восстанавливаемых источников энергии. В некоторых случаях результаты даже выглядят весьма оптимистично и позволяют надеяться на определенные

Изменения.

Энергия - не только одно из чаще всего обсуждаемых сегодня понятий; помимо своего основного физического содержания, оно имеет многочисленные экономические, технические, политические и иные аспекты.
Человечеству нужна энергия, причем потребности в ней увеличиваются с каждым годом. Вместе с тем запасы традиционных видов природного топлива (нефти, угля, газа и др.) исчерпаемы. Конечны также и запасы ядерного топлива - урана и тория.

Остаются два пути: строгая экономия при расходовании энергоресурсов и использование нетрадиционных возобновляемых источников энергии.

Список литературы

  1. Баланчевадзе В. И., Барановский А. И. Под ред. А. Ф. Дьякова. Энергетика сегодня и завтра. - М.: Энергоатомиздат, 1990.
  2. Бернер М., Рябов Е. Замени лампочку - помоги Родине // Эксперт, 21-31 декабря 2009. - №49-50.
  3. Информация об энергосбережении и повышении энергетической эффективности: проблемы, пути решения, передовой опыт // Энергосбережение и водоподготовка, 2010. - №1(63).
  4. Кириллин В. А. Энергетика. Главные проблемы: в вопросах и ответах. - М.: Знание, 1990.
  5. Нетрадиционные источники энергии. - М.: Знание, 1982.
  6. Щукин А. Энергия свечей, человека и земли // Эксперт, 5-11 октября 2009. - №38.
  7. Энергетические ресурсы мира. Под ред. П.С.Непорожнего, В.И. Попкова. - М.: Энергоатомиздат, 1995.
  8. http://www.energy-source.ru/
  9. http://www.energija.ru/
  10. http://solar-battery.narod.ru/
  11. http://dom-en.ru/

Альтернативная энергетика в наше время является одним из самых популярных направлений для активной деятельности инновационных компаний и их разработок. В этой сфере ведётся огромное количество исследований, здесь заняты тысячи учёных, работающих в разных странах мира. А как же обстоят дела с альтернативной энергетикой в России? Если вы хотите знать ответ на данный вопрос, тогда эта статья может быть вам интересна.

Прежде чем понять, что представляет собой альтернативная энергетика в России, необходимо разобраться с тем, что называется альтернативной энергетикой. Если говорить кратко, то альтернативная энергетика – это комплекс мер и способов, позволяющих получать энергию, используя для этого возобновляемые ресурсы.

К возобновляемым источникам энергии относится:

  • Солнечная;
  • Энергия вод;
  • Ветровая;
  • Приливная;
  • Геотермальная энергия и многие другие источники энергии.

Ускоренные темпы развития являются характерной чертой для современной альтернативной энергетики во многих странах мира. Причина заключается в попытке снизить зависимость человечества от невозобновляемых источников энергии. Хорошей демонстрацией текущей зависимости человечества от нефти, газа и других подобных ресурсов стало такое известное событие, как нефтяной кризис 1973 года, который во многом способствовал поиску новых решений в сфере альтернативной энергетики.

Что касается положения России, то долгое время она не торопилась вести активные исследования в этой сфере, так как обладает большим количеством невозобновляемых источников энергии. На данный момент Россия обладает опытом в создании электростанций, которые используют в своей работе альтернативные источники энергии. Главной проблемой в этом направлении является отсутствие необходимой поддержки со стороны государства.

Виды альтернативной энергетики

На данный момент существует большое количество видов альтернативной энергетики.

Био

Биомасса (энергоносители растительного происхождения) может быть успешно использована для получения энергии. Важно отметить, что некоторая часть биомассы относится к традиционным источникам энергии (древесина, опилки, стружка и т. д.). Что же касается альтернативных источников энергии, то к понятию «биомасса» относятся растения, сельскохозяйственные отходы. Для сжигания биомассы используются два основных подхода:

  • Использование котлов высокого давления (КПД такого процесса составляет 40–50%);
  • Использование газовых турбин (КПД такого процесса составляет 93%);

Чтобы сжигание биомассы было экономически выгодным, необходимо выполнять её переработку вблизи источников сырья. По той причине, что источником сырья чаще всего выступают фермы и сельскохозяйственные предприятия, большая часть объектов, занимающихся переработкой биомассы, располагается вблизи них. Такой подход позволяет получить довольно большое количество энергии по небольшой цене.

Что касается России, то наиболее подходящими регионами для переработки биомассы являются Черноземье, Краснодарский край, Центральная часть России, Юг Сибири.

Ветровая

Ветер успешно используется для получения энергии. По целому ряду причин, наиболее выгодным местом для размещения ветряков является береговая линия (не меньше чем в 10 км от моря). В случае с Россией, наиболее подходящими местами для размещения ветряных электростанций является прибрежная линия Крайнего Севера, а также Дальний Восток.

Водородная

Альтернативная энергия из водорода может быть получена несколькими методами:

  • Из природного газа;
  • Из лёгкой нефти;
  • Методом разложения воды на составляющие элементы (водород и кислород);
  • Из микроорганизмов;
  • Из ферментов;

Следует отметить, что водородный двигатель по эффективности превосходит стандартный двигатель внутреннего сгорания примерно в 2–3 раза, что делает альтернативную энергию, полученную из водорода, очень перспективным направлением как во всём мире, так и в РФ.

Геотермальная

Геотермальный способ получения альтернативной энергии позволяет использовать тепло земной коры. Использование геотермальной энергетики актуально лишь в определённых местах планеты, где это будет экономически целесообразно. На данный момент больше всего геотермальных электростанций находится на территории Италии, США, Ирландии и Новой Зеландии.

Мировое производство энергии с использованием геотермальных источников составляет 19,3 тыс. МВт. Россия производит порядка 10% все геотермальной энергии мира. Однако геотермальная энергетика в России должна развиваться и дальше, так как её потенциал очень велик. По оценке некоторых экспертов, только Камчатка способна производить порядка 5 тыс. МВт энергии, используя геотермальные источники.

Солнечная

Солнечная энергетика является одним из самых перспективных направлений, так как Солнце – это мощнейший источник энергии, который способен полностью решить все энергетические проблемы нашей планеты. Кроме того, солнечная энергетика является полностью «зелёной», она не причиняет никакого вреда экологии.

На данный момент солнечная энергия производится во многих страна с использованием специальных фотоэлементов. Они устанавливаются на крышах зданий, солнечные батареи установлены на космических объектах. Специальные гелиостанции устанавливаются в местах с большим количеством солнечных дней.

Одной из основных проблем солнечной энергетики является низкий КПД используемых фотоэлементов, который в лучшем случае достигает 23%. Это не касается солнечных батарей, развернутых в космосе: от них КПД очень высок. Среди других недостатков также следует отметить непостоянный объём производства энергии, а также необходимость большого количества свободной территории для установки фотоэлементов.

В Российской Федерации лучшими местами для строительства гелиостанций являются Краснодарский край, Кубань, Приморье и Восточная Сибирь.

Термоядерная

Одним из самых многообещающих направлений в альтернативной энергетике является контролируемый термоядерный синтез, при помощи которого может быть полностью решена энергетическая проблема не только конкретных стран, но и всего человечества.

Среди главных преимуществ термоядерной энергетики нельзя не отметить:

  • Неиссякаемые источники;
  • Экологическую безопасность;
  • Экономическую эффективность.

На данный момент ещё не удалось создать станций термоядерного синтеза, которые были бы экономически выгодными. Однако в этом направлении ведутся активные работы.

У истоков контролируемого термоядерного синтеза стоят известные учёные Илья Тамм, Игорь Курчатов и Андрей Сахаров. Первые исследования в этом направлении начали вестись ещё в 1950-е годы в СССР.

Одним из самых перспективных проектов в этом направлении является международный проект ITER, который должен дать первые серьёзные результаты, по прогнозам, в 2040–2050-е годы. Россия, как и многие другие страны, является участником этой программы.

Состояние альтернативной энергетики в России

В 90-е годы, в связи с определёнными событиями (распад СССР), многие программы по исследованиям в сфере альтернативной энергетики были частично или полностью прекращены. Затем были попытки вновь начать исследования в этом направлении, и даже определились регионы Российской Федерации, в которых развитие данной сферы особенно перспективно. Но несмотря на это в 2000-е годы исследования в этой сфере были практически прекращены.

Одной из причин прекращения работы в данной сфере стала высокая цена на нефть, что, в свою очередь, отбило желание у государства вкладывать средства в поиски новых способов получения энергии.

Достижения России в альтернативной энергетике

На данный момент исследования в направлении «зеленой» энергетики в России практически не ведутся, однако государство имеет определённые достижения в этой сфере.

Среди таких достижений можно отметить наличие целого ряда ветряных электростанций, а также наличие геотермальных станций.

Развитие солнечной энергетики в России также даёт свои определённые плоды, на территории страны работает несколько солнечных станций. Определённое развитие получила и приливная энергетика.

Проблемы

Одной из главных проблем для всех занимающихся альтернативной энергетикой в России является отсутствие господдержки, а также отсутствие нормативно-правовой базы для этого рода деятельности.

Среди других проблем следует отметить отсутствие выгоды от вложений в эту сферу, а также неконкурентоспособность электростанций, использующих альтернативные источники энергии, по сравнению с использующими традиционные.

Следует отметить, что в период с 2000 до 2010 год процент использования возобновляемых источников в российском энергетическом балансе увеличился. Однако причиной этого стало большее использование традиционно возобновляемых источников – таких, как отходы деревообрабатывающей промышленности.

Ещё одним серьёзным недостатком является отсутствие необходимой инфраструктуры для развития альтернативной энергетики, а также недостаток кадров, способных работать в этом направлении, особенно высококвалифицированных. Причины этого заключаются в том, что инвестиции в эту сферу пока что невыгодны, поэтому их практически нет. Даже несмотря на то, что альтернативные источники энергии в России имеются в большом достатке. Данную проблему способна решить господдержка, хотя бы на ранних стадиях проектов, пока они не достигнут окупаемости.

Здравствуйте, уважаемые читатели! В этой статьей мы хотели бы поговорить про развитие альтернативных источников энергии в Российской Федерации. Сразу стоит сказать, что различные виды альтернативной энергетики используются в нашей стране достаточно давно. Как минимум, Вы наверное догадались, это ветряные и водяные мельницы, которые на протяжении сотен лет были достаточно популярны в нашей стране для помола зерна и подъёма воды. Сегодня же их заменили ветряки и гидроэлектростанции. Потом ещё также стоит отметить использование примитивных солнечных коллекторов для нагрева воды - в форме тёмных по цвету баков, в которые наливали воду и она нагревалась под воздействием солнечных лучей.

Потенциал альтернативной энергетики в России

Но теперь с приходом прогресса данные архаичные методы «забора» энергии из альтернативных источников сменились на более современные. Сегодня - пусть и достаточно редко - но ветряки всё же встречаются на земле русской. Также широкое распространение во времена Советского Союза получили большие промышленные гидроэлектростанции. Плюс эффективные выпущенные промышленно солнечные коллекторы и солнечные батареи сегодня в меру активно, но всё же устанавливают в солнечных регионах нашей страны. И надо сказать, что потенциал альтернативной энергетики в России ещё далёк до раскрытия. Плюс ещё не стоит забывать, что альтернативная энергетика и экология - это братья навек. То есть развивая альтернативные источники энергии в России, мы одновременно решаем проблемы экологии. Которые для нашей страны актуальны как никогда.

Проблемы альтернативной энергетики в России

Главная проблема заключается в том, что Россия очень богата на минеральные ресурсы. И электричество, которое мы сегодня получаем путём сжигания земных недр - угля, газа и нефти. Поэтому считается, что сегодня не особо выгодно устанавливать достаточно дорогие солнечные панели или, к примеру, ветряки там, где уже проведены линии газа и электроэнергии. Это и есть основные проблемы альтернативной энергетики. И это действительно так. Без существенных налоговых послаблений для пионеров альтернативной энергетики в России достаточно сложно ждать «альтернативного» бума. Как, впрочем, показывает и мировая практика - в странах, где государство идёт навстречу подобным инновациям, процесс более, чем динамичен. Хотя так или иначе использование альтернативных источников электроэнергии - по крайне мере в современном смысле — по карману не всем.

Первый путь развития — принципиальный

Тем не менее всё же можно ожидать роста альтернативной энергетики в России по двум причинам. Во-первых, потому что упор на альтернативные источники энергии - это международная тенденция, которую сложно игнорировать. Ведь это не только большое количество энергии, но и инвестиции в инновационную деятельность, и новые рабочие места. Одним словом, долго игнорировать такой лакомый кусок не получится ни у одного государства. Если это государство стремится быть современным и эффективным, конечно. Однако пока что, увы, традиционные нефть и уголь являются более интересными как с позиции государства, так и с позиции бизнеса. Тем не менее, запасы нефти, угля и газа не бесконечны. И рано или поздно, но и в России придётся сделать нечто такое, что сейчас происходит в США, Китае и Евросоюзе. А там, как пишут наши зарубежные коллеги, количество ветряков, солнечных, геотермальных и приливных электростанций растет не по дням, а по часам. При этом, не забываем, что альтернативная энергетика и экология - идут рука об руку.

Второй путь развития — естественный

Теперь про второй путь развития альтернативной энергетики в России. А именно - про регионы, в которых не всё так гладко с привычным нам электричеством и газом. Речь идёт про труднодоступные населенные пункты севера, который мы так активно стремимся осваивать. И вот если подсчитать, сколько стоит доставка энергоресурсов в некоторые удаленные уголки нашей страны, альтернативная энергетика, развитая прямо на месте, то есть установленная солнечная или ветряная электростанция и прочие альтернативные источники электрической энергии кажутся уже не такими уж и дорогими. Плюс - и большой плюс - повышается автономность населенных пунктов. Они становятся менее зависимы от завоза ресурсов, поскольку начинают вырабатывать их на месте буквально из воздуха. Или из солнца. И примеры таких решений в нашей стране уже имеются .

Также не стоит забывать, что белые пятна без проведенных источников газа или электричества всё же встречаются в России не только на крайнем севере. А даже рядом с крупными городами. Понятно, что речь идёт про дачи. Притом даже если электричество на дачи проведено, чтобы подключить его в свой дом, требуется достаточно много бумажной волокиты. Поэтому вполне себе вариант - установить солнечные батареи на крыше дачного домика. Телевизор, как минимум, питать хватит. Поэтому альтернативная энергетика в Сибири также экономически оправдана. Хотя бы в таких регионах, как Омская область. Где солнечных дней не на много меньше, чем в Краснодаре.

Как дела у мирного атома

Особняком стоят атомные электростанции. С этим источником электроэнергии сначала в Советском Союзе, а потом и в России, всё в порядке. Росатом объявляет о существенных планах по строительству новых и новых станции как на территории России, так и за рубежом.

Атомные электростанции в России активно развиваются. Безусловно, это прекрасный и высокотехнологичный способ получать электроэнергию, поскольку нужно всего лишь немного урана. И можно разместить реактор хоть под землей, хоть в космосе, хоть на борту корабля. Однако это очень опасно. И можно сказать, что в плане общественного мнения - атомные станции в упадке. Стоит лишь вспомнить недавнюю аварию на Фукусиме или знаменитый Чернобыль.

Безусловно, солнечные, ветряные, геотермальные, приливные станции и прочие виды альтернативной энергетики лишены данного недостатка. И предлагают практически неисчерпаемую энергию для всех желающих. Поэтому развитие альтернативных источников энергии идёт большими темпами во всём развитом мире. Посмотрим, куда оно приведёт и нас! Кстати, некоторые авторы утверждают, что если бы в развитие альтернативных источников энергии вложили столько же средств, как в развитие атомной энергетики, к настоящему времени существенную долю энергии мы бы получали от солнца и ветра.

В приводимом ниже видео рассказано о строительстве ветроэлектростанций в Калмыкии:

Альтернативная энергетика - совокупность перспективных способов получения энергии, которые распространены не так широко, как традиционные, однако представляют интерес из-за выгодности их использования при низком риске причинения вреда экологии.

Альтернативный источник энергии - способ, устройство или сооружение, позволяющее получать электрическую энергию (или другой требуемый вид энергии) и заменяющий собой традиционные источники энергии, функционирующие на нефти, добываемом природном газе и угле.

Виды альтернативной энергетики : солнечная энергетика, ветроэнергетика, биомассовая энергетика, волновая энергетика, градиент-температурная энергетика, эффект запоминания формы, приливная энергетика, геотермальная энергия.

Солнечная энергетика - преобразование солнечной энергии в электроэнергию фотоэлектрическим и термодинамическим методами. Для фотоэлектрического метода используются фотоэлектрические преобразователи (ФЭП) с непосредственным преобразованием энергии световых квантов (фотонов) в электроэнергию.

Термодинамические установки, преобразующие энергию солнца вначале в тепло, а затем в механическую и далее в электрическую энергию, содержат "солнечный котел", турбину и генератор. Однако солнечное излучение, падающее на Землю, обладает рядом характерных особенностей : низкой плотностью потока энергии, суточной и сезонной цикличностью, зависимостью от погодных условий. Поэтому изменения тепловых режимов могут вносить серьезные ограничения в работу системы. Подобная система должна иметь аккумулирующее устройство для исключения случайных колебаний режимов эксплуатации или обеспечения необходимого изменения производства энергии во времени. При проектировании солнечных энергетических станций необходимо правильно оценивать метеорологические факторы.

Геотермальная энергетика - способ получения электроэнергии путем преобразования внутреннего тепла Земли (энергии горячих пароводяных источников) в электрическую энергию.

Этот способ получения электроэнергии основан на факте, что температура пород с глубиной растет, и на уровне 2-3 км от поверхности Земли превышает 100°С. Существует несколько схем получения электроэнергии на геотермальной электростанции.

Прямая схема: природный пар направляется по трубам в турбины, соединенные с электрогенераторами. Непрямая схема: пар предварительно (до того как попадает в турбины) очищают от газов, вызывающих разрушение труб. Смешанная схема: неочищенный пар поступает в турбины, а затем из воды, образовавшийся в результате конденсации, удаляют не растворившиеся в ней газы.

Стоимость "топлива" такой электростанции определяется затратами на продуктивные скважины и систему сбора пара и является относительно невысокой. Стоимость самой электростанции при этом невелика, так как она не имеет топки, котельной установки и дымовой трубы.

К недостаткам геотермальных электроустановок относится возможность локального оседания грунтов и пробуждения сейсмической активности. А выходящие из-под земли газы могут содержать отравляющие вещества. Кроме того, для постройки геотермальной электростанции необходимы определенные геологические условия.

Ветроэнергетика - это отрасль энергетики, специализирующаяся на использовании энергии ветра (кинетической энергии воздушных масс в атмосфере).

Ветряная электростанция - установка, преобразующая кинетическую энергию ветра в электрическую энергию. Состоит она из ветродвигателя, генератора электрического тока, автоматического устройства управления работой ветродвигателя и генератора, сооружений для их установки и обслуживания.

Для получения энергии ветра применяют разные конструкции: многолопастные «ромашки»; винты вроде самолетных пропеллеров; вертикальные роторы и др.

Производство ветряных электростанций очень дешево, но их мощность мала, и их работа зависит от погоды. К тому же они очень шумны, поэтому крупные ветряные электростанции даже приходится на ночь отключать. Помимо этого, ветряные электростанции создают помехи для воздушного сообщения, и даже для радиоволн. Применение ветряных электростанций вызывает локальное ослабление силы воздушных потоков, мешающее проветриванию промышленных районов и даже влияющее на климат. Наконец, для использования ветряных электростанций необходимы огромные площади, много больше, чем для других типов электрогенераторов.

Волновая энергетика - способ получения электрической энергии путем преобразования потенциальной энергии волн в кинетическую энергию пульсаций и оформлении пульсаций в однонаправленное усилие, вращающее вал электрогенератора.

По сравнению с ветровой и солнечной энергией энергия волн обладает гораздо большей удельной мощностью . Так, средняя мощность волнения морей и океанов, как правило, превышает 15 кВт/м. При высоте волн в 2 м мощность достигает 80 кВт/м. То есть, при освоении поверхности океанов не может быть нехватки энергии. В механическую и электрическую энергию можно использовать только часть мощности волнения, но для воды коэффициент преобразования выше, чем для воздуха - до 85 процентов.

Приливная энергетика, как и прочие виды альтернативной энергетики, является возобновляемым источником энергии.

Для выработки электроэнергии электростанции такого типа используют энергию прилива. Для устройства простейшей приливной электростанции (ПЭС) нужен бассейн - перекрытый плотиной залив или устье реки. В плотине имеются водопропускные отверстия и установлены гидротурбины, которые вращают генератор.

Во время прилива вода поступает в бассейн. Когда уровни воды в бассейне и море сравняются, затворы водопропускных отверстий закрываются. С наступлением отлива уровень воды в море понижается, и, когда напор становится достаточным, турбины и соединенные с ним электрогенераторы начинают работать, а вода из бассейна постепенно уходит.

Считается экономически целесообразным строительство приливных электростанций в районах с приливными колебаниями уровня моря не менее 4 м. Проектная мощность приливной электростанции зависит от характера прилива в районе строительства станции, от объема и площади приливного бассейна, от числа турбин, установленных в теле плотины.

Недостаток приливных электростанции в том, что они строятся только на берегу морей и океанов, к тому же они развивают не очень большую мощность, да и приливы бывают всего лишь два раза в сутки. И даже они экологически не безопасны. Они нарушают нормальный обмен соленой и пресной воды и тем самым - условия жизни морской флоры и фауны. Влияют они и на климат, поскольку меняют энергетический потенциал морских вод, их скорость и территорию перемещения.

Градиент-температурная энергетика . Этот способ добычи энергии основан на разности температур. Он не слишком широко распространен. С его помощью можно вырабатывать достаточно большое количество энергии при умеренной себестоимости производства электроэнергии.

Большинство градиент-температурных электростанций расположено на морском побережье и используют для работы морскую воду. Мировой океан поглощает почти 70% солнечной энергии, падающей на Землю. Перепад температур между холодными водами на глубине в несколько сотен метров и теплыми водами на поверхности океана представляет собой огромный источник энергии, оцениваемый в 20-40 тысяч ТВт, из которых практически может быть использовано лишь 4 ТВт.

Вместе с тем, морские теплостанции, построенные на перепаде температур морской воды, способствуют выделению большого количества углекислоты, нагреву и снижению давления глубинных вод и остыванию поверхностных. А процессы эти не могут не сказаться на климате, флоре и фауне региона.

Биомассовая энергетика . При гниении биомассы (навоз, умершие организмы, растения) выделяется биогаз с высоким содержанием метана, который и используется для обогрева, выработки электроэнергии и пр.

Существуют предприятия (свинарники и коровники и др.), которые сами обеспечивают себя электроэнергией и теплом за счет того, что имеют несколько больших "чанов", куда сбрасывают большие массы навоза от животных. В этих герметичных баках навоз гниет, а выделившийся газ идет на нужды фермы.

Еще одним преимуществом этого вида энергетики является то, что в результате использования влажного навоза для получения энергии, от навоза остается сухой остаток являющийся прекрасным удобрением для полей.

Также в качестве биотоплива могут быть использованы быстрорастущие водоросли и некоторые виды органических отходов (стебли кукурузы, тростника и пр.).

Эффект запоминания формы - физическое явление, впервые обнаруженное советскими учеными Курдюмовым и Хондросом в 1949 году.

Эффект запоминания формы наблюдается в особых сплавах и заключается в том, что детали из них восстанавливают после деформации свою начальную форму при тепловом воздействии. При восстановлении первоначальной формы может совершаться работа, значительно превосходящая ту, которая была затрачена на деформацию в холодном состоянии. Таким образом, при восстановлении первоначальной формы сплавы вырабатывают значительно количество тепла (энергии).

Основным недостатком эффекта восстановления формы является низкий КПД - всего 5-6 процентов.

Материал подготовлен на основе информации открытых источников