Источники энергии – Грозы (Молнии). Устройство для накопления электрической энергии молнии Молния как источник энергии

Каждый, кто когда-нибудь читал про огромные значения напряжений и токов в канале линейной молнии, задумывался: а нельзя ли как-то эти молнии ловить и переправлять в энергетические сети? Дабы питать холодильники, лампочки, тостеры и прочие стиральные машины. Разговоры о таких станциях ведутся уже много лет, но не исключено, что в следующем году мы наконец увидим действующий образец "сборщика молний".


Проблем тут масса. Молнии, увы, слишком ненадёжный поставщик электричества. Предугадать заранее, где случится гроза, едва ли возможно. А ждать её на одном месте - долго.

Кроме того, молния - это напряжения порядка сотен миллионов вольт и пиковый ток до 200 килоампер. Чтобы "питаться" молниями, их энергию явно нужно где-то накапливать за те тысячные доли секунды, что длится главная фаза разряда (удар молнии, кажущийся мгновенным, на самом деле состоит из нескольких фаз), а потом медленно отдавать в сеть, попутно преобразуя в стандартные 220 вольт и 50 или 60 герц переменного тока.

Во время разряда вмолнии происходит довольно сложный процесс Сначала из облака к земле устремляется разряд-лидер, сформированный электронными лавинами, которые сливаются в разряды, называемые также стримерами. Лидер создаёт горячий ионизированный канал, по которому в противоположном направлении пробегает главный разряд молнии, вырванный с поверхности Земли сильным электрическим полем.

Далее все эти стадии могут повториться и 2, и 3, и 10 раз - за те самые доли секунды, что длится молния. Представьте, насколько сложная задача - поймать этот разряд и направить ток в нужное место. Как видим, проблем немало. А стоит ли тогда вообще связываться с молниями?

Если поставить такую станцию в местности, где молнии бьют намного чаще обычного, толк, наверное, будет. При одном сильном грозовом шторме, когда молнии бьют непрерывно друг за другом, может выделиться такое количество энергии, что хватит на обеспечение электричеством всех США в течение 20 минут. Конечно, какую бы станцию по ловле молний мы ни придумали, её КПД при преобразовании тока будет далеко не 100%, да и поймать, видимо, удастся отнюдь не все молнии, ударившие в окрестностях молниевой фермы.

Грозы случаются на Земле очень неравномерно. Специалисты, работающие с американским спутником "Миссия измерения тропических штормов" опубликовали отчёт об одном из последних достижений этого спутника. Составлена мировая карта частоты молний. Например, в центральной части африканского континента есть немаленькая зона, где на квадратный километр приходится более 70 молний в год!

Пока с такими проектами использования энергии молний выступают в основном изобретатели из США. Американская компания Alternative Energy Holdings сообщает, что собирается осчастливить мир экологически чистой электростанцией, вырабатывающей ток по смешной цене $0,005 за киловатт-час. В разное время разные изобретатели предлагали самые необычные накопители - от подземных резервуаров с металлом, который плавился бы от молний, попадающих в молниеотвод, и нагревал бы воду, чей пар вращал бы турбину, до электролизёров, разлагающих разрядами молний воду на кислород и водород. Но возможный успех связан с более простыми системами.

Alternative Energy Holdings заявляет, что построит первый рабочий прототип такой станции, способной накапливать энергию грозовых разрядов, уже в 2007 году. Компания намерена испытать свою установку в течение грозового сезона будущего года, в одном из мест, где молнии гуляют чаще обычного. При этом разработчики накопителя оптимистично считают, что электростанция "на молниях" окупится за 4-7 лет.

http://www.membrana.ru/




Знаете ли вы?

Глаз и фотоны

Чувствительность сетчатки глаза можно проверить самому, повторив простой опыт, поставленный в свое время известным советским ученым С. И. Вавиловым.

Между обыкновенной лампой накаливания и вашей точкой наблюдения установите стробоскоп - картонный диск диаметром 15-20 см, с вырезанным сектором градусов в 60, насаженный на ось. А теперь, вращая диск стробоскопа со скоростью примерно оборот в секунду, посмотрите на лампу одним глазом сквозь диск.

Вот что будет при этом происходить: вращаясь, диск станет отмерять для глаза пропорции света. Лампа светит неравномерно, то есть ее световой поток пульсирует, но, поскольку диск вращается относительно медленно, пропорции света будут отличаться друг от друга всего на несколько фотонов. И эту разницу, доступную лишь самым-самым точным приборам, без труда уловит ваш глаз - присмотревшись, вы увидите слабую пульсацию света! Легче провести этот эксперимент, если над «измерительной» лампой вы поставите еще одну - опорную. Ее свет поможет вам сосредоточиться.

Каждый, кто когда-нибудь читал про огромные значения напряжений и токов в канале линейной молнии, задумывался: а нельзя ли как-то эти молнии ловить и переправлять в энергетические сети? Дабы питать холодильники, лампочки, тостеры и прочие стиральные машины. Разговоры о таких станциях ведутся уже много лет, но не исключено, что в следующем году мы наконец увидим действующий образец «сборщика молний».

Покопавшись в фантастической литературе, наверняка можно наткнуться на что-то подобное. Да и разных патентных заявок на эту тему, полагаем, сделано немало. Только вот реального воплощения всё не видать.

Проблем тут масса. Молнии, увы, слишком ненадёжный поставщик электричества. Предугадать заранее, где случится гроза, едва ли возможно. А ждать её на одном месте - долго. Кроме того, молния - это напряжения порядка сотен миллионов вольт и пиковый ток до 200 килоампер (в некоторых измеренных молниях; обычно - 5-20 килоампер).

Чтобы «питаться» молниями, их энергию явно нужно где-то накапливать за те тысячные доли секунды, что длится главная фаза разряда (удар молнии, кажущийся мгновенным, на самом деле состоит из нескольких фаз), а потом медленно отдавать в сеть, попутно преобразуя в стандартные 220 вольт и 50 или 60 герц переменного тока.

Заметим, что во время разряда молнии происходит довольно сложный процесс. Сначала из облака к земле (внутриоблачные молнии мы не рассматриваем) устремляется разряд-лидер, сформированный электронными лавинами, которые сливаются в разряды, называемые также стримерами. Лидер создаёт горячий ионизированный канал, по которому в противоположном направлении пробегает главный разряд молнии, вырванный с поверхности Земли сильным электрическим полем.

А ведь ещё надо добавить, что и те молнии, которые пробегают между облаками и землёй, делятся на два «зеркальных» типа: одни вызываются отрицательными разрядами, накапливающимися в нижней части грозового облака, а другие - положительными, которые собираются в его верхней части. Правда, второй тип встречается от 4 (в средних широтах) до 17 (в тропиках) раз реже, чем разряды первого типа (отрицательные молнии). Но и эту разницу всё равно нужно учитывать при проектировании сборщиков небесного электричества.

К сожалению, сторонники молниевых ферм забывают упомянуть, что сотни стальных вышек, которые, возможно, потребуются для эффективного сбора значительной доли молний, ударяющих во время грозы на приличной территории, эту самую территорию никак не украсят (на снимке - просто какие-то стальные мачты, фото Arek Daniel).

Как видим, проблем немало. А стоит ли тогда вообще связываться с молниями? Если поставить такую станцию в местности, где молнии бьют намного чаще обычного, толк, наверное, будет. По некоторым данным , при одном сильном грозовом шторме, когда молнии бьют непрерывно друг за другом, может выделиться такое количество энергии, что хватит на обеспечение электричеством всех США в течение 20 минут.

Конечно, какую бы станцию по ловле молний мы ни придумали, её КПД при преобразовании тока будет далеко не 100%, да и поймать, видимо, удастся отнюдь не все молнии, ударившие в окрестностях молниевой фермы.

Но всё равно, если бы грозы над станцией случались хотя бы раз в неделю... Стоп, так ведь в любой момент времени на нашей планете бушует 2 тысячи гроз! Заманчиво?

Да. Только распределяются эти грозы по столь большой площади, что перспективы поимки молнии «за хвост» сразу становятся туманными.

С другой стороны, грозы случаются на Земле очень неравномерно. К примеру, американские новаторы, задумывающиеся над сбором молний, давно посматривают в сторону Флориды: там есть район, славящийся как место, прямо-таки облюбованное небесными стрелами.

Ещё больше повезло Африке. Буквально на днях специалисты, работающие с американским спутником «Миссия измерения тропических штормов» (Tropical Rainfall Measuring Mission - TRMM), опубликовали отчёт об одном из свежих достижений этого спутника.

Проведя многолетние наблюдения, TRMM (руками специалистов, конечно) «составил» мировую карту частоты молний, окрасив ту или иную часть Земли в соответствии с числом ослепительных разрядов, возникающих над каждым квадратным километром данной местности за год.

Как видно из рисунка, в центральной части африканского континента есть немаленькая зона, где на квадратный километр приходится более 70 молний в год!


Частота молний в мире. Шкала справа проградуирована в штуках на квадратный километр в год, усреднённых по 11 годам наблюдения со спутника TRMM (иллюстрация NASA/MSFC).

Правда, разглядывая эту карту, нужно учесть, что в тропиках и ближе к экватору большая доля всех случающихся молний возникает между облаками или разными частями одного облака, а вот в средних широтах, напротив, значительную долю общего числа грозовых молний составляют «приземлённые» разряды. Выходит, и для России не всё потеряно, да и Центральная Африка (за счёт немалого общего числа молний) может рассчитывать на успех в сборе столь экзотического урожая.

Но пока с такими проектами выступают всё больше изобретатели из США.

К примеру, американская компания Alternative Energy Holdings , делясь планами своего развития, сообщает , что собирается осчастливить мир экологически чистой электростанцией, вырабатывающей ток по смешной цене $0,005 за киловатт-час.

Как именно в компании намерены собирать энергию разрядов - не указывается. Можно только предположить, что речь идёт о молниеотводах, снабжённых гигантскими наборами суперконденсаторов и преобразователей напряжения.

Кстати, в разное время разные изобретатели предлагали самые необычные накопители - от подземных резервуаров с металлом, который плавился бы от молний, попадающих в молниеотвод, и нагревал бы воду, чей пар вращал бы турбину, до электролизёров, разлагающих разрядами молний воду на кислород и водород. Но мы полагаем, что хоть какой-то возможный успех связан с более простыми системами.

Впрочем, посмотрим. Alternative Energy Holdings, что приятно, не ограничивается общими рассуждениями о светлом (далёком) будущем молниевой энергетики, а заявляет, что построит первый рабочий прототип такой станции, способной накапливать энергию грозовых разрядов, уже в 2007 году.

Компания намерена испытать свою установку в течение грозового сезона (то бишь лета) будущего года, в одном из мест, где молнии гуляют чаще обычного. При этом разработчики накопителя оптимистично считают, что электростанция «на молниях» окупится за 4-7 лет.

учащиеся 9 класса Артамонов Михаил, Денисов Дмитрий, Раца Диана

Человек научился использовать энергию воды – строя гидроэлектростанции, энергию ветра – строя ветряные станции и даже энергию атома – строя атомные электростанции. Сейчас активно используется солнечная энергия, аккумулируемая в солнечных батареях.

В будущем человечество будет искать альтернативные источники энергии. Природные ресурсы планеты Земля рано или поздно иссякнут, надо будет осваивать новые источники энергии. Возможно, человечество научится использовать энергию молнии. В молнии сосредоточена большая сила тока и большое напряжение.

В данном проекте мы попытались теоретически описать возможный вариант преобразования энергии молнии. В США ведутся исследования и разработки по данной теме. Данная тема работы актуальна в наши дни и в будущем.

Скачать:

Предварительный просмотр:

Международная молодежная научная конференция

«XXXIX Гагаринские чтения» МБОУ «Зубово – Полянская СОШ №1»

Использование энергии молнии.

Проект

(научно – техническое направление)

Исполнители: учащиеся 9 класса

Артамонов Михаил, Денисов Дмитрий, Раца Диана

Руководитель: учитель физики Велькин Николай Григорьевич

п. Ударный

2013г.

1. Введение

2. Теоретическая часть

2.1. История исследования молнии 4

2.2. Образование молнии и её виды. 5

3. Практическая часть

3.1. Расчеты _ 7

3.2. Принцип работы установки 8


Обычно когда говорят о альтернативной энергетике, то традиционно подразумевают установки по производству электрической энергии из восстанавливаемых источников – солнечного света и ветра. При всем этом статистика исключает создание электроэнергии на гидроэлектростанциях, станциях, использующих мощь морских и океанических приливов, также геотермальные электростанции. Хотя, данные источники энергии кроме того считаются восстанавливаемыми. Но, они классические, используются в промышленных масштабах уже долгие и длительные годы.

Альтернативный источник энергии считается восстанавливаемым ресурсом, он подменяет собой классические источники энергии, функционирующие на нефти, добываемом природном газе и угле, которые при сгорании выделяют в атмосферу углекислый газ, способствующий подъему парникового эффекта и глобальному потеплению.
Первопричина поиска альтернативных источников энергии — необходимость получать её из энергии восстанавливаемых либо фактически неистощимых естественных ресурсов и явлений. Во внимание сможет браться помимо прочего экологичность и экономичность.

Главными источниками энергии для такого вида систем считаются энергии Солнца, ветра и природное состояние грунта на поверхности Земли (для грунтовых термических насосов). Используя восстанавливаемые источники энергии, мы значительно влияем на экологию и энергетический кризис на Земле, также получаем автономию от обычных видов энергии, значительную экономию средств и уверенность в завтрашнем дне.

Отрасли альтернативной энергетики

Гелиоэнергетика

Солнечные электростанции одни из самых распространенных на планете, работают в более чем 80 странах мира и используют неисчерпаемый источник энергии - солнечный свет.
В ходе выработки электроэнергии, а по мере надобности еще и тепла для подогрева жилых помещений и подачи тёплой воды, они не наносят практически никакого ущерба окружающей среде.

Очень зависима гелиоэнергетика от погоды и времени суток: в пасмурный день и, особенно, ночью электроэнергию получить не удастся. Приходится обзаводиться аккумуляторными батареями, что умножает стоимость установки солнечных панелей, к примеру, на даче, а кто муже создает неблагоприятные моменты для окружающей среды в связи с необходимостю утилизации тех же отработавших аккумуляторов.
Помимо фотоэлементов и фотобатерей, широко применяются и солнечные коллекторы и солнечные водонагреватели, они используется как для нагрева воды для отопления, так и для производства электроэнергии.
Фаворитами в популяризации гелиоэнергетики считаются Германия, Япония и Испания. Ясное дело, что превосходство здесь имеют южные державы, где солнце горячо освещает практически и зимой и летом.

Ветроэнергетика

Энергию ветра относят к восстанавливаемым видам энергии, потому что она считается следствием активности Солнца. Ветроэнергетика считается бурно развивающейся отраслью. К началу 2014 года общая мощность всех ветрогенераторов составила примерно 320 гигаватт!
Пятерку лидеров в мировой выработке электричества с помощью ветра составили Китай, США,Германия, Дания и Португалия.
Здесь опять-таки почти все находится в зависимости от погодных условий: в одних государствах ветер не стихает ни на один миг, в других напротив огромную часть времени стоит штиль.

Есть у ветроэнергетики как весомые достоинства, так и настолько же весомые недостатки. По сравнению с солнечными панелями «ветряки» стоят дешево и не зависят от времени суток, посему часто встречаются на загородных участках. Значимый минус у ветрогенераторов исключительно один – они изрядно шумят. Установку такового оборудования придется согласовывать не только лишь с родимыми, но и обитателями близлежащих домов.

Геотермальная энергетика

В районах с вулканической активностью, где подземные воды могут нагреваются выше температуры кипения, оптимально строить геотермальные теплоэлектростанции (ГеоТЭС).
Употребляется как для нагрева воды для отопления, но и для производства электричества. На геотермальных электрических станциях вырабатывают большую часть электричества в государствах Центральной Америки, на Филиппинах, в Исландии; Исландия помимо прочего являет собой образчик державы, где термальные воды обширно употребляются для подогрева, отопления.

Большим плюсом геотермальной энергии считается её фактическая неиссякаемость и абсолютная автономия от условий окружающей среды, времени суток и года.
Есть следующие принципиальные возможности применения тепла земных глубин. Воду либо смесь воды и пара зависимо от их температуры возможно направлять для горячего водоснабжения и теплоснабжения, для выработки электричества или сразу для этих всех целей. Высокотемпературное тепло околовулканического региона и сухих горных пород желательно применять для выработки электричества и теплоснабжения. От того, какой источник геотермальной энергии используется, зависит устройство станции.
Основная из проблем, которые возникают при применении подземных термальных вод, заключается в потребности повторяемого цикла поступления (закачки) воды (традиционно отработанной) в подземный водоносный горизонт. В термальных водах находится много солей разных токсичных металлов (к примеру, бора, свинца, цинка, кадмия, мышьяка) и хим соединений (аммиака, оксибензолов), что исключает сброс этих вод в естественные водные системы, находящиеся на поверхности.

Альтернативная гидроэнергетика

Нестандартное применения аква ресурсов планетки для выработки энергии предполагает три вида электрических станций: волновые, приливные и водопадные. При этом наиболее многообещающими из них считаются первые: средняя мощность волнения мирового океана расценивают в 15 кВт на метр, а при вышине волн повыше двух метров пиковая мощность сможет достигать аж 80 кВт/м.
Главная особенность волновых электростанций – сложность преобразования движения волн "вверх-вниз" во вращение диска генератора, но современные разработки понемногу находят решения етой задачи.

Приливные электростанции имеют существенно меньшую мощность, нежели волновые, зато их куда проще и комфортнее возводить в прибрежной зоне морей. Гравитационные силы Луны и Солнца два раза в сутки заменяют уровень воды в море (разница сможет достигать 2-ух десятков метров), что дает возможность использовать энергию приливов и отливов для выработки электро энергии.

Биотопливо

Биотопливо — горючее из растительного либо животного сырья, из продуктов жизнедеятельности организмов либо органических промышленных отходов. Различается жидкое биотопливо (для движков внутреннего сгорания, к примеру, этанол, метанол, биодизель), твёрдое биотопливо (дрова, брикеты, топливные гранулки, щепа, трава, лузга) и газообразное (синтезированый газ, биогаз, водород).
Жидкое, твердое и газообразное биотопливо может стать заменой не только лишь обычным источникам электро энергии, но и топливу. В отличие от нефти и природного газа, восстановить припасы которых не осуществимо, биотопливо возможно производить в синтетических условиях.

Перспектива за жидким и газообразным биотопливом: биодизелем, биоэтанолом, биогазом и синтез-газом. Они все производятся на базе богатых сахаром либо жирами растений: сладкого тростника, кукурузы причем даже морского фитопланктона. Последний вариант так и вовсе имеет бескрайние возможности: растить водные растения в синтетических условиях дело не хитрое.

Грозовая энергетика

Молнии считаются чрезвычайно ненадёжным источником энергии, потому что заблаговременно невозможно предвидеть, где и как скоро произойдет гроза.
Ещё одна проблема грозовой энергетики заключается в том, что разряд молнии продолжается доли секунд и, как последствие, его энергию необходимо припасать довольно быстро. Чтобы достичь желаемого результата требуются массивные и дорогие конденсаторы. Помимо прочего могут применяться разные колебательные системы с контурами второго и третьего семейства, где возможно согласовывать нагрузку с внутренним противодействием генератора.

Молния считается сложным электрическим процессом и разделяется на несколько видов: негативные — накапливающиеся в нижней части тучи и позитивные — собирающиеся в высшей части тучи. Это также нужно учесть при разработке молниевых приемников.
По данным ученых, при одной мощной грозе высвобождается примерно столько энергии, сколько все жители США в среднем потребляют за 20 минут.

Водородная энергетика

Вид альтернативной энергетики основанной на применении водорода в виде средства для аккумулирования, транспортировки и употребления энергии людьми, автотранспортной инфраструктурой и разными производственными направлениями. Водород избран не спроста, а потому как он наиболее распространенный элемент на поверхности земли и в космосе, теплота сгорания водорода более высока, а продуктом сгорания в кислороде считается вода (которая снова вводится в оборот водородной энергетики).

На сегодня для производства водорода потребуется более энергии, нежели возможно обрести при его применении, потому считать его источником энергии невозможно. Он считается только средством сохранения и доставки энергии.
Но есть и большая опасность массового производства водорода, если водород будит просачиваться из баллона или других резервуаров хранения, будучи легче воздуха он безвозвратно покинет атмосферу Земли, что при массовом применении технологий, может привести к глобальной потере воды, если водород будет производится электролизом воды.

Космическая энергетика

Здесь предусматривается использование энергии Солнца для выработки электроэнергии, с расположених энергетических станций на земной орбите или на Луне, электроэнергия от которых будет передаваться на Землю в форме микроволнового излучения. Может способствовать глобальному потеплению. До сих пор не применяется.

На 2012 год альтернативная энергия (не считая гидроэнергии) составляла 5.1% всей потребляемой человечеством энергии.

25.04.2018

Это направление пока еще можно назвать теоретическим. Его суть состоит в том, чтобы улавливать энергию молний с последующим перенаправлением ее в электросети. Такой источник энергии является возобновляемым, специалисты относят его к альтернативным, иначе говоря, экологически безопасным.

Как мы помним из школьного курса, образование молний представляет собой довольно сложный процесс. Из наэлектризованных облаков по направлению к земле устремляется главный разряд, сформированный электронными лавинами, объединенными в стримеры (разряды). За этим разрядом-лидером образуется горячий ионизированный канал. В свою очередь, по этому каналу в направлении от Земли движется главный разряд молнии, который вырывается с поверхности под действием мощного электрического поля. Процесс протекает молниеносно, повторяясь по несколько раз за долю секунды. Главная задача – уловить этот разряд и направить его в электросеть.

О преимуществах

Небесным электричеством люди заинтересовались очень давно. Стоит вспомнить Бенджамина Франклина, который в своих опытах запускал во время грозы воздушных змеев и в результате понял, что они собирают электрические заряды.

Если говорить об энергии молний, то в одном разряде собрано пять миллиардов джоулей чистейшей энергии, эквивалентной 145 литрам бензина. Ученые рассчитали, что один разряд молнии может обеспечить энергией население Соединенных Штатов на 20 минут. А если учесть, что каждый год по всей Земле ударяет полтора миллиарда разрядов (от 40 до 50 разрядов за секунду), то перспективы открываются поистине потрясающие.

Об экспериментах

Представители компании Alternative Energy Holdings в 2006 году сделали заявление, что ими успешно создан прототип конструкции, при помощи которой можно наглядно показать, как происходит захват молнии и ее преобразование в энергию для бытовых нужд. Как сказали в Alternative Energy Holdings, действующий промышленный аналог способен окупить себя за 4-7 лет, если розничная стоимость энергии будет составлять 0,005 $ за киловатт/час. Но проведенная серия опытов, видимо, не продемонстрировала впечатляющих результатов, и руководители проекта закрыли его. После чего энергия молний и энергия атомной бомбы были поставлены в один ряд (по словам Мартина А. Умани).

Через несколько лет (в 2013 году) сотрудники саунгемптонского университета смоделировали в лаборатории искусственный заряд, совпадающий с параметрами естественных молний. Используя сравнительно простое оборудование, ученые сумели уловить заряд и с его помощью целиком зарядить аккумулятор смартфона за считанные минуты.

О перспективах

Фермы по «отлову» молний пока еще просто мечта. На них можно было бы бесконечно получать дешевую энергию, не нанося вреда экологии. Главная проблема, препятствующая развитию этого направления, заключается в невозможности предсказания места и времени очередной грозы. То есть даже в местах с установленным максимальным числом ударов молний необходимо монтировать большое количество «ловушек».

Есть еще другие проблемы, которые заключаются в следующем:

  • молнии представляют собой кратковременные энергетические всплески длительностью в доли секунды, которые необходимо осваивать очень быстро. Решить эту задачу можно при наличии мощных конденсаторов. Однако такие устройства еще не созданы, а если и будут разработаны в будущем, то окажутся очень дорогими. Не исключено применение и различных колебательных систем с наличием контуров 2 и 3 рода, которые позволяют проводить согласование нагрузки с внутренним сопротивлением генераторов;
  • молнии могут образовываться из энергии, скопившейся в верхней и нижней частях облаков. В первом случае они будут положительными, во втором – отрицательными. Это тоже необходимо учитывать, оборудуя молниевую ферму. Кроме того, для «ловли» заряда со знаком плюс потребуется дополнительная энергия, наглядным доказательством чего служит люстра Чижевского;
  • по своей мощности заряды тоже сильно различаются. У большинства молний данный параметр составляет от 5 до 20 кА, однако у некоторых всполохов может достигать 200 кА. Для бытового использования каждый из разрядов необходимо стандартизировть (50-60 Гц, 220 В);
  • заряженные ионы в кубометре атмосферы имеют низкую плотность, а сопротивление воздуха, наоборот, высокое. Это говорит о том, что для улавливания молний необходимы ионизированные электроды, приподнятые над землей на максимальную величину, однако и они улавливают энергию лишь в виде микротоков. Но если электрод будет расположен слишком высоко (т.е. близко к облакам), то возможно самопроизвольное образование молнии, проще говоря, возникнет мощный и кратковременный всплеск напряжения, создающий риск поломки оборудования.

И все же такие проблемы не останавливают людей, мечтающих создать молниевые фермы. Ведь мечта об укрощении природы и получении доступа к возобновляемым энергетическим ресурсам существует сотни лет и становится все более реальной.