Обмен энергии. Обмен энергии в организме человека

Обмен веществ и энергии, или метаболизм ,— совокупность химических и физических превращений веществ и энергии, происходящих в живом организме и обеспечивающих его жизнедеятельность. Обмен веществ и энергии составляет единое целое и подчиняется закону сохранения материи и энергии.

Обмен веществ складывается из процессов ассимиляции и диссимиляции. Ассимиляция (анаболизм) — процесс усвоения организмом веществ, при котором расходуется энергия. Диссимиляция (катаболизм) — процесс распада сложных органических соединений, протекающий с высвобождением энергии.

Единственным источником энергии для организма человека является окисление органических веществ, поступающих с пищей. При расщеплении пищевых продуктов до конечных элементов — углекислого газа и воды,— выделяется энергия, часть которой переходит в механическую работу, выполняемую мышцами, другая часть используется для синтеза более сложных соединений или накапливается в специальных макроэргических соединениях.

Макроэргическими соединениями называют вещества, расщепление которых сопровождается выделением большого количества энергии. В организме человека роль макроэргических соединений выполняют аденозинтрифосфорная кислота (АТФ) и креатинфосфат (КФ).

ОБМЕН БЕЛКОВ .

Белками (протеинами) называют высокомолекулярные соединения, построенные из аминокислот. Функции:

Структурная, или пластическая, функция состоит в том, что белки являются главной составной частью всех клеток и межклеточных структур. Каталитическая, или ферментная, функция белков заключается в их способности ускорять биохимические реакции в организме.

Защитная функция белков проявляется в образовании иммунных тел (антител) при поступлении в организм чужеродного белка (например, бактерий). Кроме того, белки связывают токсины и яды, попадающие в организм, и обеспечивают свертывание крови и остановку кровотечения при ранениях.

Транспортная функция заключается в переносе многих веществ. Важнейшей функцией белков является передача наследственных свойств , в которой ведущую роль играют нуклеопротеиды. Различают два основных типа нуклеиновых кислот: рибонуклеиновые кислоты (РНК) и дезоксирибонуклеиновые кислоты (ДНК).

Регуляторная функция белков направлена на поддержание биологических констант в организме.

Энергетическая роль белков состоит в обеспечении энергией всех жизненных процессов в организме животных и человека. При окислении 1 г белка в среднем освобождается энергия, равная 16,7 кДж (4,0 ккал).

Потребность в белках. В организме постоянно происходит распад и синтез белков. Единственным источником синтеза нового белка являются белки пищи. В пищеварительном тракте белки расщепляются ферментами до аминокислот и в тонком кишечнике происходит их всасывание. Из аминокислот и простейших пептидов клетки синтезируют собственный белок, который характерен только для данного организма. Белки не могут быть заменены другими пищевыми веществами, так как их синтез в организме возможен только из аминокислот. Вместе с тем белок может замещать собой жиры и углеводы, т. е. использоваться для синтеза этих соединений.

Биологическая ценность белков. Некоторые аминокислоты не могут синтезироваться в организме человека и должны обязательно поступать с пищей в готовом виде. Эти аминокислоты принято называть незаменимыми , или жизненно-необходимыми. К ним относятся: валин, метионин, треонин, лейцин, изолейцин, фенилаланин, триптофан и лизин, а у детей еще аргинин и гистидин. Недостаток незаменимых кислот в пище приводит к нарушениям белкового обмена в организме. Заменимые аминокислоты в основном синтезируются в организме.

Белки, содержащие весь необходимый набор аминокислот, называют биологически полноценными . Наиболее высока биологическая ценность белков молока, яиц, рыбы, мяса. Биологически неполноценными называют белки, в составе которых отсутствует хотя бы одна аминокислота, которая не может быть синтезирована в организме. Неполноценными белками являются белки кукурузы, пшеницы, ячменя.

Азотистый баланс. Азотистым балансом называют разность между количеством азота, содержащегося в пище человека, и его уровнем в выделениях.

Азотистое равновесие — состояние, при котором количество выведенного азота равно количеству поступившего в организм. Азотистое равновесие наблюдается у здорового взрослого человека.

Положительный азотистый баланс — состояние, при котором количество азота в выделениях организма значительно меньше, чем содержание его в пище, то есть наблюдается задержка азота в организме. Положительный азотистый баланс отмечается у детей в связи с усиленным ростом, у женщин во время беременности, при усиленной спортивной тренировке, приводящей к увеличению мышечной ткани, при заживлении массивных ран или выздоровлении после тяжелых заболеваний.

Азотистый дефицит (отрицательный азотистый баланс) отмечается тогда, когда количество выделяющегося азота больше содержания его в пище, поступающей в организм. Отрицательный азотистый баланс наблюдается при белковом голодании, лихорадочных состояниях, нарушениях нейроэндокринной регуляции белкового обмена.

Распад белка и синтез мочевины. Важнейшими азотистыми продуктами распада белков, которые выделяются с мочой и потом, являются мочевина, мочевая кислота и аммиак.

ОБМЕН ЖИРОВ .

Жиры делят на простые липиды (нейтральные жиры, воски), сложные липиды (фосфолипиды, гликолипиды, сульфолипиды) и стероиды (холестерин и др.). Основная масса липидов представлена в организме человека нейтральными жирами. Нейтральные жиры пищи человека являются важным источником энергии. При окислении 1 г жира выделяется 37,7 кДж (9,0 ккал) энергии.

Суточная потребность взрослого человека в нейтральном жире составляет 70—80 г, детей 3—10 лет — 26—30 г.

Нейтральные жиры в энергетическом отношении могут быть заменены углеводами. Однако есть ненасыщенные жирные кислоты — линолевая, линоленовая и арахидоновая, которые должны обязательно содержаться в пищевом рационе человека, их называют не заменимыми жирными кислотами .

Нейтральные жиры, входящие в состав пищи и тканей человека, представлены главным образом триглицеридами, содержащими жирные кислоты — пальмитиновую, стеариновую, олеиновую, линолевую и линоленовую.

В обмене жиров важная роль принадлежит печени. Печень — основной орган, в котором происходит образование кетоновых тел (бета-оксимасляная, ацетоуксусная кислоты, ацетон). Кетоновые тела используются как источник энергии.

Фосфо- и гликолипиды входят в состав всех клеток, но главным образом в состав нервных клеток. Печень является практически единственным органом, поддерживающим уровень фосфолипидов в крови. Холестерин и другие стероиды могут поступать с пищей или синтезироваться в организме. Основным местом синтеза холестерина является печень.

В жировой ткани нейтральный жир депонируется виде триглицеридов.

Образование жиров из углеводов. Избыточное употребление углеводов с пищей приводит к отложению жира в организме. В норме у человека 25—30% углеводов пищи превращается в жиры.

Образование жиров из белков. Белки являются пластическим материалом. Только при чрезвычайных обстоятельствах белки используются для энергетических целей. Превращение белка в жирные кислоты происходит, вероятнее всего, через образование углеводов.

ОБМЕН УГЛЕВОДОВ .

Биологическая роль углеводов для организма человека определяется прежде всего их энергетической функцией. Энергетическая ценность 1 г углеводов составляет 16,7 кДж (4,0 ккал). Углеводы являются непосредственным источником энергии для всех клеток организма, выполняют пластическую и опорную функции.

Суточная потребность взрослого человека в углеводах составляет около 0,5 кг . Основная часть их (около 70%) окисляется в тканях до воды и углекислого газа. Около 25—28% пищевой глюкозы превращается в жир и только 2—5% ее синтезируется в гликоген — резервный углевод организма.

Единственной формой углеводов, которая может всасываться, являются моносахара. Они всасываются главным образом в тонком кишечнике, током крови переносятся в печень и к тканям. В печени из глюкозы синтезируется гликоген. Этот процесс носит название гликогенеза . Гликоген может распадаться до глюкозы. Это явление называют гликогенолизом . В печени возможно новообразование углеводов из продуктов их распада (пировиноградной или молочной кислоты), а также из продуктов распада жиров и белков (кетокислот), что обозначается как гликонеогенез . Гликогенез, гликогенолиз и гликонеогенез — тесно взаимосвязанные и протекающие в печени процессы, обеспечивающие оптимальный уровень сахара крови.

В мышцах, так же как и в печени, синтезируется гликоген. Распад гликогена является одним из источников энергии мышечного сокращения. При распаде мышечного гликогена процесс идет до образования пировиноградной и молочной кислот. Этот процесс называют гликолизом . В фазе отдыха из молочной кислоты в мышечной ткани происходит ре-синтез гликогена.

Головной мозг содержит небольшие запасы углеводов и нуждается в постоянном поступлении глюкозы. Глюкоза в тканях мозга преимущественно окисляется, а небольшая часть ее превращается в молочную кислоту. Энергетические расходы мозга покрываются исключительно за счет углеводов. Снижение поступления в мозг глюкозы сопровождается изменением обменных процессов в нервной ткани и нарушением функций мозга.

Образование углеводов из белков и жиров (гликонеогенез). В результате превращения аминокислот образуется пировиноградная кислота, при окислении жирных кислот — ацетилкоэнзим А, который может превращаться в пировиноградную кислоту — предшественник глюкозы. Это наиболее важный общий путь биосинтеза углеводов.

Между двумя основными источниками энергии — углеводами и жирами — существует тесная физиологическая взаимосвязь. Повышение содержания глюкозы в крови увеличивает биосинтез триглицеридов и уменьшает распад жиров в жировой ткани. В кровь меньше поступает свободных жирных кислот. Если возникает гипогликемия, то процесс синтеза триглицеридов тормозится, ускоряется распад жиров и в кровь в большом количестве поступают свободные жирные кислоты.

ВОДНО-СОЛЕВОЙ ОБМЕН.

Все химические и физико-химические процессы, протекающие в организме, осуществляются в водной среде. Вода выполняет в организме следующие важнейшие функции : 1) служит растворителем продуктов питания и обмена; 2) переносит растворенные в ней вещества; 3) ослабляет трение между соприкасающимися поверхностями в теле человека; 4) участвует в регуляции температуры тела за счет большой теплопроводности, большой теплоты испарения.

Общее содержание воды в организме взрослого человека составляет 50 —60% от его массы, то есть достигает 40—45 л .

Принято делить воду на внутриклеточную, интрацеллюлярную (72%) и внеклеточную, экстрацеллюлярную (28%). Внеклеточная вода размещена внутри сосудистого русла (в составе крови, лимфы, цереброспинальной жидкости) и в межклеточном пространстве.

Вода поступает в организм через пищеварительный тракт в виде жидкости или воды, содержащейся в плотных пищевых продуктах. Некоторая часть воды образуется в самом организме в процессе обмена веществ.

При избытке в организме воды наблюдается общая гипергидратация (водное отравление), при недостатке воды нарушается метаболизм. Потеря 10% воды приводит к состоянию дегидратации (обезвоживание), при потере 20% воды наступает смерть.

Вместе с водой в организм поступают и минеральные вещества (соли). Около 4% сухой массы пищи должны составлять минеральные соединения.

Важной функцией электролитов является участие их в ферментативных реакциях.

Натрий обеспечивает постоянство осмотического давления внеклеточной жидкости, участвует в создании биоэлектрического мембранного потенциала, в регуляции кислотно-основного состояния.

Калий обеспечивает осмотическое давление внутриклеточной жидкости, стимулирует образование ацетилхолина. Недостаток ионов калия тормозит анаболические процессы в организме.

Хлор является также важнейшим анионом внеклеточной жидкости, обеспечивая постоянство осмотического давления.

Кальций и фосфор находятся в основном в костной ткани (свыше 90%). Содержание кальция в плазме и крови является одной из биологических констант, так как даже незначительные сдвиги в уровне этого иона могут приводить к тяжелейшим последствиям для организма. Снижение уровня кальция в крови вызывает непроизвольные сокращения мышц, судороги, и вследствие остановки дыхания наступает смерть. Повышение содержания кальция в крови сопровождается уменьшением возбудимости нервной и мышечной тканей, появлением парезов, параличей, образованием почечных камней. Кальций необходим для построения костей, поэтому он должен поступать в достаточном количестве в организм с пищей.

Фосфор участвует в обмене многих веществ, так как входит в состав макроэргических соединений (например, АТФ). Большое значение имеет отложение фосфора в костях.

Железо входит в состав гемоглобина, миоглобина, ответственных за тканевое дыхание, а также в состав ферментов, участвующих в окислительно-восстановительных реакциях. Недостаточное поступление в организм железа нарушает синтез гемоглобина. Уменьшение синтеза гемоглобина ведет к анемии (малокровию). Суточная потребность в железе взрослого человека составляет 10—30 мкг .

Йод в организме содержится в небольшом количестве. Однако его значение велико. Это связано с тем, что йод входит в состав гормонов щитовидной железы, оказывающих выраженное влияние на все обменные процессы, рост и развитие организма.

Образование и расход энергии.

Энергия, освобождающаяся при распаде органических веществ, накапливается в форме АТФ, количество которой в тканях организма поддерживается на высоком уровне. АТФ содержится в каждой клетке организма. Наибольшее количество ее обнаруживается в скелетных мышцах — 0,2—0,5%. Любая деятельность клетки всегда точно совпадает по времени с распадом АТФ.

Разрушившиеся молекулы АТФ должны восстановиться. Это происходит за счет энергии, которая освобождается при распаде углеводов и других веществ.

О количестве затраченной организмом энергии можно судить по количеству тепла, которое он отдает во внешнюю среду.

Методы измерения затрат энергии (прямая и непрямая калориметрия).

Дыхательный коэффициент.

Прямая калориметрия основана на непосредственном определении тепла, высвобождающегося в процессе жизнедеятельности организма. Человека помещают в специальную калориметрическую камеру, в которой учитывают все количество тепла, отдаваемого телом человека. Тепло, выделяемое организмом, поглощается водой, протекающей по системе труб, проложенных между стенками камеры. Метод очень громоздок, применение его возможно в специальных научных учреждениях. Вследствие этого в практической медицине широко используют метод непрямой калориметрии. Сущность этого метода заключается в том, что сначала определяют объем легочной вентиляции, а затем — количество поглощенного кислорода и выделенного углекислого газа. Отношение объема выделенного углекислого газа к объему поглощенного кислорода носит название дыхательного коэффициента . По величине дыхательного коэффициента можно судить о характере окисляемых веществ в организме.

При окислении углеводов дыхательный коэффициент равен 1 так как для полного окисления 1 молекулы глюкозы до углекислого газа и воды потребуется 6 молекул кислорода, при этом выделяется 6 молекул углекислого газа:

С 6 Н12О 6 +60 2 =6С0 2 +6Н 2 0

Дыхательный коэффициент при окислении белка равен 0,8, при окислении жиров — 0,7.

Определение расхода энергии по газообмену. Количество тепла, высвобождающегося в организме при потреблении 1 л кислорода — калорический эквивалент кислорода — зависит от того, на окислении каких веществ используется кислород. Калорический эквивалент кислорода при окислении углеводов равен 21,13 кДж (5,05 ккал), белков 20,1 кДж (4,8 ккал), жиров — 19,62 кДж (4,686 ккал).

Расход энергии у человека определяют следующим образом. Человек дышит в течение 5 мин, через мундштук (загубник), взятый в рот. Мундштук, соединенный с мешком из прорезиненной ткани, имеет клапаны. Они устроены так, что человек свободно вдыхает атмосферный воздух, а выдыхает воздух в мешок. С помощью газовых часов измеряют объем выдохнутого воздуха. По показателям газоанализатора определяют процентное содержание кислорода и углекислого газа во вдыхаемом и выдыхаемом человеком воздухе. Затем рассчитывают количество поглощенного кислорода и выделенного углекислого газа, а также дыхательный коэффициент. С помощью соответствующей таблицы по величине дыхательного коэффициента устанавливают калорический эквивалент кислорода и определяют расход энергии.

Основной обмен и его значение.

Основной обмен — минимальное количество энергии, необходимое для поддержания нормальной жизнедеятельности организма в состоянии полного покоя при исключении всех внутренних и внешних влияний, которые могли бы повысить уровень обменных процессов. Основной обмен веществ определяют утром натощак (через 12—14 ч после последнего приема пищи), в положении лежа на спине, при полном расслаблении мышц, в условиях температурного комфорта (18—20° С). Выражается основной обмен количеством энергии, выделенной организмом (кДж/сут).

В состоянии полного физического и психического покоя организм расходует энергию на: 1) постоянно совершающиеся химические процессы; 2) механическую работу, выполняемую отдельными органами (сердце, дыхательные мышцы, кровеносные сосуды, кишечник и др.); 3) постоянную деятельность железисто-секреторного аппарата.

Основной обмен веществ зависит от возраста, роста, массы тела, пола. Самый интенсивный основной обмен веществ в расчете на 1 кг массы тела отмечается у детей. С увеличением массы тела усиливается основной обмен веществ. Средняя величина основного обмена веществ у здорового человека равна приблизительно 4,2 кДж (1 ккал) в 1 ч на 1 кг массы тела .

По расходу энергии в состоянии покоя ткани организма неоднородны. Более активно расходуют энергию внутренние органы, менее активно — мышечная ткань.

Интенсивность основного обмена веществ в жировой ткани в 3 раза ниже, чем в остальной клеточной массе организма. Худые люди производят больше тепла на 1 кг массы тела, чем полные.

У женщин основной обмен веществ ниже, чем у мужчин. Это связано с тем, что у женщин меньше масса и поверхность тела. Согласно правилу Рубнера основной обмен веществ приблизительно пропорционален поверхности тела.

Отмечены сезонные колебания величины основного обмена веществ - повышение его весной и снижение зимой. Мышечная деятельность вызывает повышение обмена веществ пропорционально тяжести выполняемой работы.

К значительным изменениям основного обмена приводят нарушения функций органов и систем организма. При повышенной функции щитовидной железы, малярии, брюшном тифе, туберкулезе, сопровождающихся лихорадкой, основной обмен веществ усиливается.

Расход энергии при физической нагрузке.

При мышечной работе значительно увеличиваются энергетические затраты организма. Это увеличение энергетических затрат составляет рабочую прибавку, которая тем больше, чем интенсивнее работа.

По сравнению со сном при медленной ходьбе расход энергии увеличивается в 3 раза, а при беге на короткие дистанции во время соревнований — более чем в 40 раз.

При кратковременных нагрузках энергия расходуется за счет окисления углеводов. При длительных мышечных нагрузках в организме расщепляются преимущественно жиры (80% всей необходимой энергии). У тренированных спортсменов энергия мышечных сокращений обеспечивается исключительно за счет окисления жиров. У человека, занимающегося физическим трудом, энергетические затраты возрастают пропорционально интенсивности труда.

ПИТАНИЕ.

Восполнение энергетических затрат организма происходит за счет питательных веществ. В пище должны содержаться белки, углеводы, жиры, минеральные соли и витамины в небольших количествах и правильном соотношении. Усвояемость пищевых веществ зависит от индивидуальных особенностей и состояния организма, от количества и качества пищи, соотношения различных составных частей ее, способа приготовления. Растительные продукты усваиваются хуже, чем продукты животного происхождения, потому что в растительных продуктах содержится большее количество клетчатки.

Белковый режим питания способствует осуществлению процессов всасывания и усвояемости пищевых веществ. При преобладании в пище углеводов усвоение белков и жиров снижается. Замена растительных продуктов продуктами животного происхождения усиливает обменные процессы в организме. Если вместо растительных давать белки мясных или молочных продуктов, а вместо ржаного хлеба — пшеничный, то усвояемость продуктов питания значительно повышается.

Таким образом, чтобы обеспечить правильное питание человека, необходимо учитывать степень усвоения продуктов организмом. Кроме того, пища должна обязательно содержать все незаменимые (обязательные) питательные вещества: белки и незаменимые аминокислоты, витамины, высоконепредельные жирные кислоты, минеральные вещества и воду.

Основную массу пищи (75-80%) составляют углеводы и жиры.

Пищевой рацион - количество и состав продуктов питания, необходимых человеку в сутки. Он должен восполнять суточные энергетические затраты организма и включать в достаточном количестве все питательные вещества.

Для составления пищевых рационов необходимо знать содержание белков, жиров и углеводов в продуктах и их энергетическую ценность. Имея эти данные, можно составить научно обоснованных пищевой рацион для людей разного возраста, пола и рода занятий.

Режим питания и его физиологическое значение. Необходимо соблюдать определенный режим питания, правильно его организовать: постоянные часы приема пищи, соответствующие интервалы между ними, распределение суточного рациона в течение дня. Принимать пищу следует всегда в определенное время не реже 3 раз в сутки: завтрак, обед и ужин. Завтрак по энергетической ценности должен составлять около 30% от общего рациона, обед — 40—50%, а ужин — 20—25%. Рекомендуется ужинать за 3 ч до сна.

Правильное питание обеспечивает нормальное физическое развитие и психическую деятельность, повышает работоспособность, реактивность и устойчивость организма к влиянию окружающей среды.

Согласно учению И. П. Павлова об условных рефлексах, организм человека приспосабливается к определенному времени приема пищи: появляется аппетит и начинают выделяться пищеварительные соки. Правильные промежутки между приемами пищи обеспечивают чувство сытости в течение этого времени.

Трехкратный прием пищи в общем физиологичен. Однако предпочтительнее четырехразовое питание, при котором повышается усвоение пищевых веществ, в частности белков, не ощущается чувство голода в промежутках между отдельными приемами пищи и сохраняется хороший аппетит. В этом случае энергетическая ценность завтрака составляет 20%, обед — 35%, полдник—15%, ужин — 25%.

Рациональное питание. Питание считается рациональным, если полностью удовлетворяется потребность в пище в количественном и качественном отношении, возмещаются все энергетические затраты. Оно содействует правильному росту и развитию организма, увеличивает его сопротивляемость вредным воздействиям внешней среды, способствует развитию функциональных возможностей организма и повышает интенсивность труда. Рациональное питание предусматривает разработку пищевых рационов и режимов питания применительно к различным контингентам населения и условиям жизни.

Как уже указывалось, питание здорового человека строится на основании суточных пищевых рационов. Рацион и режим питания больного называются диетой. Каждая диета имеет определенные составные части пищевого рациона и характеризуется следующими признаками: 1) энергетической ценностью; 2) химическим составом; 3) физическими свойствами (объем, температура, консистенция); 4)режимом питания.

Регуляция обмена веществ и энергии.

Условнорефлекторные изменения обмена веществ и энергии наблюдаются у человека в предстартовых и предрабочих состояниях. У спортсменов до начала соревнования, а у рабочего перед работой отмечается повышение обмена веществ, температуры тела, увеличивается потребление кислорода и выделение углекислого газа. Можно вызвать условнорефлекторные изменения обмена веществ, энергетических и тепловых процессов у людей на словесный раздражитель.

Влияние нервной системы на обменные и энергетические процессы в организме осуществляется несколькими путями:

Непосредственное влияние нервной системы (через гипоталамус, эфферентные нервы) на ткани и органы;

Опосредованное влияние нервной системы через гипофиз (соматотропин) ;

Опосредованное влияние нервной системы через тропные гормоны гипофиза и периферические железы внутренней секреции;

Прямое влияниенервной системы (гипоталамус) на активность желез внутренней секреции и через них на обменные процессы в тканях и органах.

Основным отделом центральной нервной системы, который регулирует все виды обменных и энергетических процессов, является гипоталамус. Выраженное влияние на обменные процессы и теплообразование оказывают железы внутренней секреции. Гормоны коры надпочечников и щитовидной железы в больших количествах усиливают катаболизм, т. е. распад белков.

В организме ярко проявляется тесное взаимосвязанное влияние нервной и эндокринной систем на обменные и энергетические процессы. Так, возбуждение симпатической нервной системы не только оказывает прямое стимулирующее влияние на обменные процессы, но при этом увеличивается секреция гормонов щитовидной железы и надпочечников (тироксин и адреналин). За счет этого дополнительно усиливается обмен веществ и энергии. Кроме того, эти гормоны сами повышают тонус симпатического отдела нервной системы. Значительные изменения в метаболизме и теплообмене происходят при дефиците в организме гормонов желез внутренней секреции. Например, недостаток тироксина приводит к снижению основного обмена. Это связано с уменьшением потребления кислорода тканями и ослаблением теплообразования. В результате снижается температура тела.

Гормоны желез внутренней секреции участвуют в регуляции обмена веществ и энергии, изменяя проницаемость клеточных мембран (инсулин), активируя ферментные системы организма (адреналин, глюкагон и др.) и влияя на их биосинтез (глюкокортикоиды) .

Таким образом, регуляция обмена веществ и энергии осуществляется нервной и эндокринной системами, которые обеспечивают приспособление организма к меняющимся условиям его обитания.


Обмен энергии в организме челове­ка происходит в соответствии с фундаментальными законами рав­новесия в открытой саморегулирующейся системе. У человека имеется сложный механизм поддержания энергетического равно­весия, который зависит от уровня поступления энергии с пита­нием. Обмен происходит в рамках двух основных метаболических процессов: катаболизма (диссимиляции) и анаболизма (ассими­ляции). Эти процессы осуществляются у взрослого здорового че­ловека в относительном равновесии. Дисбаланс метаболизма яв­ляется прямой причиной развития различных функциональных нарушений, а со временем - патологических процессов (заболе­ваний).

Интенсивность обменных процессов имеет генетическую де­терминацию на видовом и индивидуальном уровнях.

Преобладание ассимиляции над диссимиляцией наблюдается у здорового человека в период роста и развития организма - в сред­нем до 25 лет. Обратная картина отмечается у лиц в возрастной группе после 60 лет (престарелый и старческий возраст).

Энергетический баланс.

Под энергетическим балансом следует понимать равновесное состояние между поступающей с пищей энергией и ее затратами в процессе поддержания оптимального гомеостаза. Проявлениями энергетического баланса у детей явля­ются оптимальные показатели роста и развития, а у взрослых - стабильность массы тела.

Основными энергонесушими нутриентами являются белки, жиры и углеводы. При диссимиляции 1 г белка организм аккуму­лирует 4 ккал энергии (1 ккал = 4,18 кДж). При диссимиляции 1 г углеводов также высвобождается 4 ккал энергии. Жиры имеют более существенный энергетический потенциал - распад 1 г жира со­ответствует 9 ккал. Энергию несут также органические кислоты (уксусная, яблочная, молочная, лимонная) - около 3 ккал в 1 г и алкоголь - 1 г этилового спирта может принести организму 7 ккал. При этом органические кислоты из-за своего малого коли­чества в среднем рационе питания не имеют существенного прак­тического значения, а алкоголь в силу физиологически неполно­ценного использования выделяющейся энергии не может рассмат­риваться в качестве адекватного пищевого источника энергии (хотя его чрезмерное употребление следует учитывать при оценке об­щего энергобаланса).

В наибольшей степени организм использует с энергетически­ми целями углеводы и жиры. При выраженном дефиците двух этих макронутриентов в качестве источника энергии кратковременно может быть использован белок пищи. В организме человека энер­гия запасается главным образом в виде жира (различные депо) и белка (в первую очередь в виде мышечной массы). Запасы углево­дов у человека практически отсутствуют (за исключением неболь­шого количества гликогена) - все они оперативно трансфор­мируются в метаболических процессах, а их излишки превраща­ются в жиры.

С гигиенической позиции энергия различных видов пищевых продуктов характеризуется по-разному. В питании целесообразно использовать продукты (в том числе и высокоэнергетические), содержащие значимые количества незаменимых аминокислот и микронутриентов (витаминов и минеральных веществ) - основ­ных структурных и регуляторных компонентов макроэргических процессов. В этом случае в организме будет протекать физиологи­чески полноценный обмен веществ.

Чем больше в продукте веществ, не несущих для организма энергии (воды, пищевых волокон), тем меньше его калорийность. Продукты, содержащие преимущественно жиры, моно- и дисаха-риды (в том числе так называемые «скрытые»), а также алкоголь относятся к высококалорийным и способствуют синтезу и депо­нированию в организме жира (с нарушением жирового и углевод­ного обменов) с параллельными затратами дефицитных микро­нутриентов, участвующих в энергетическом обмене, и напряже­нием гормональных механизмов, отвечающих за ассимиляцию. Традиционные порции наиболее употребляемых продуктов име­ют следующую энергетическую ценность, ккал:

Патоморфология
Одним из основных проявлений болезни является ревмокардит, специфический диагностический признак которого ашофф-талалаевская гранулема. Ревматическая гранулема состоит из крупных неправильно...

Источником энергии в организме служат продукты гидролиза углеводов, жиров и белков, поступающие в организм. Освобожде­ние же энергии в организме происходит в процессе диссимиляции (катаболизма), т. е. распада клеточных структур и соединений ор­ганизма, которые синтезируются из питательных веществ, посту­пающих в кровь в результате пищеварения (гидролиза) пищевых продуктов и всасывания продуктов гидролиза в кровь. Различают основной и рабочий обмен.

А. Основным обменом называют минимальный расход энер­гии, обеспечивающий гомеостазис в стандартных условиях: при бодр­ствовании, максимальном мышечном и эмоциональном покое, нато-

Щак (12 -16 ч без еды), при температуре комфорта (18° - 20°С). Основной обмен определяют в указанных стандартных условиях по­тому, что физическая нагрузка, эмоциональное напряжение, прием пищи и изменение температуры окружающей среды увеличивают интенсивность метаболических процессов в организме (расход энер­гии). Энергия основного обмена в организме расходуется на обеспе­чение жизнедеятельности всех органов и тканей организма, клеточ­ный синтез, на поддержание температуры тела.

На величину должного (среднестатистического) основно­го обмена здорового человека влияют следующие факторы: пол, воз-. раст, рост и масса тела (вес). На величину истинного (реального) основного обмена здорового человека влияют также условия жизне­деятельности, к которым организм адаптирован: постоянное про­живание в холодной климатической зоне увеличивает основной обмен; длительное вегетарианское питание уменьшает. Величину должного основного обмена у человека определяют по табли­цам, формулам, номограммам.

Для определения величины истинного основного обмена у человека используют метод Крога (неполный газовый анализ, см. раздел 12.3).

Величина основного обмена в сутки у мужчин составляет 1500 -ъ 1700ккал (6300- 7140 кДж); в расчете на 1 кг массы в сутки равна 21-24 ккал (88 - 101 кДж). У женщин эти показатели примерно на 10% меньше.

Показатели основного обмена при расчете на 1м 2 поверхности тела у теплокровных животных разных видов и человека примерно равны, при расчете на 1 кг массы сильно отличаются: чем мельче организм, тем больше расход энергии.

Б. Рабочим обменом называют совокупность основного обме­на и дополнительного расхода энергии, обеспечивающего жизне­деятельность организма в различных условиях. Факторами, повы­шающими расход энергии организмом, являются: физическая и умственная нагрузка, эмоциональное напряжение, изменение тем­пературы и других условий окружающей среды, специфическиди-намическое действие пищи (увеличение расхода энергии после приема пищи). При этом изменение температуры в интервале 15 -30°С существенно не сказывается на энергозатратах организма. При температуре ниже 15°С, а также выше 30°С расход энергии увели­чивается. Повышение обмена веществ при температуре окружаю­щей среды ниже 15° предотвращает охлаждение организма.


Расход энергии организмом после приема белковой и смешан­ной пищи увеличивается на 20 - 30%, после приема жиров и угле­водов увеличивается на 10 - 12%.


Часть тепловой энергии, вырабатываемой организмом в процес­се его жизнедеятельности, обеспечивает механическую работу. Для определения эффективности этого преобразования вводится поня­тие коэффициент полезного действия организма при мышечной работе - это выраженное в процентах отношение энергии, эквива­лентной полезной механической работе, ко всей энергии, затрачен­ной на выполнение этой работы. Коэффициент полезного действия (КПД) у человека при мышечной работе рассчитывают по фор-

муле: КПД = ---100%, где А - энергия, эквивалентная полезной

работе, С - общий расход энергии, е - расход энергии за такой же промежуток времени в состоянии покоя. КПД равен 20%.

Материальной основой жизни являются белки. В состав клеток и тканей тела человека входит множество различных белковых веществ. В процессе жизнедеятельности организма они претерпевают сложнейшие изменения, беспрерывно распадаются на составные части и вновь воссоздаются, синтезируются.

На восстановление составных частей клеток, тканей и органов требуются не только исходные материалы - аминокислоты, углеводы и т. д., но и значительное количество энергии. Любое движение, происходящее в живом организме, как бы оно ни проявлялось - всегда требует затраты энергии.

А сколько энергии нужно для выполнения работы, которая идет внутри живого организма! Днем и ночью, например, сокращается и расслабляется сердце. Оно прогоняет по кровеносным сосудам кровь, несущую клеткам и тканям питательные вещества и кислород. Выделение пищеварительных соков, процессы всасывания также требуют затраты энергии. Ведь в течение суток, например, в желудке человека вырабатывается и выделяется более литра желудочного сока, а в кишечник поступает около литра сока поджелудочной железы и столько же кишечного сока и желчи.

Удивительнейшей «работоспособностью» обладает такой орган, как наши почки. За 24 часа здесь фильтруется более 170 литров жидкости - «первичной мочи», из которых почти 169 литров всасывается обратно в кровь. В результате этого сложного процесса фильтрации и обратного всасывания образуется и выделяется всего один - полтора литра мочи, которая содержит конечные продукты обмена веществ.

Таким образом, все физиологические процессы требуют расхода энергии, а следовательно, бесперебойного ее притока. Откуда же черпает организм энергетические ресурсы?

Первичным источником энергии являются продукты питания: белки, жиры и углеводы – наша пища. Она подвергается в организме очень сложной химической обработке, в желудке и кишечнике белки расщепляются на аминокислоты, сложные углеводы (например, крахмал, гликоген) распадаются на более простые, главным образом глюкозу, а из жиров образуются глицерин, жирные кислоты и т. д. Вновь образовавшиеся вещества всасываются в кровь. В процессе расщепления сложных веществ, входящих в состав продуктов питания, выделяется энергия, но в столь незначительном количестве, что оно ни в коей мере не может удовлетворять потребности организма.

Что служит основным источником энергии в нашем организме

Давайте проследим за дальнейшей судьбой веществ, поступивших в кровь. Благодаря чрезвычайно разветвленной сети кровеносных сосудов и капилляров они вместе с кровью попадают во все участки организма. Эти вещества в кровеносном русле постепенно смешиваются с теми, которые образовались в результате распада белков, жиров и углеводов, входящих в состав самих органов и тканей. Вместе они составляют «фонд» разнообразных химических соединений. Очень важно, что из этого «фонда» организм может выбрать все необходимое ему для построения новых клеток, для восстановления разрушенных структур органов, для образования различных пищеварительных соков, «секрета» желез и, наконец, для образования легко «сгорающего» материала, окисление которого обеспечивает необходимые энергетические ресурсы.

Можно ли более точно назвать вещества, образование которых в органах и тканях является подготовкой «горючего»?

ЕДИНАЯ «СЕМЬЯ» КИСЛОТ

Такими веществами являются относительно несложные по структуре органические кислоты. К их числу относится уксусная кислота в особой активной форме, пировиноградная, занимающая центральное место в окислительных процессах, затем янтарная, яблочная, щавелевоуксусная, кетоглутаровая и наконец лимонная.

Все перечисленные органические кислоты составляют как бы «единую» семью, члены которой при окислении последовательно переходили из одной формы в другую. В биологической химии существует специальное название этих окислительно -восстановительных реакций: лимоннокислый цикл.

Интересно отметить, что лимоннокислый цикл - характерная особенность большинства клеток и тканей человека, а также высокоорганизованных животных. Строго определенная последовательность окислительно-восстановительных реакций, происходящих в лимоннокислом цикле, вырабатывалась на протяжении миллионов лет в длительном процессе эволюции, приспособления живого организма к изменяющимся условиям внешней среды.

Последовательность химических превращений в лимонно - кислом цикле обеспечивают белки - ферменты. Они обладают чрезвычайно высокой активностью и поэтому могут ускорять и направлять химические реакции, обеспечивая переход от одного звена лимоннокислого цикла к другому.

Слов нет, все химические превращения лимоннокислого цикла достаточно сложны, и чтобы понять, откуда и как организм берет запасы энергии, необходимо хотя бы схематично рассказать об этих превращениях.

Как же они происходят? Начнем со щавелевоуксусной кислоты. Она - единственная из «семьи» кислот, которая вступает в цель окислительных реакций и выходит из них без изменений. Пировиноградная кислота, образующаяся, например, при распаде глюкозы, превращается в углекислоту и активную форму уксусной кислоты. Последняя, соединяясь со щавелевоуксусной кислотой, образует лимонную, которая затем превращается в кетоглутаровую и угольную. Кетоглутаровая кислота через янтарную и яблочную переходит в щавелевоуксусную и угольную кислоту. Далее все реакции вновь повторяются.

B результате множества строго последовательных химических реакций полностью исчезает пировиноградная кислота. Она окисляется до конечных продуктов - углекислого газа и воды.

Углекислый газ из клеток органов и тканей, где протекало окисление пировиноградной кислоты, переходит в венозную кровь, затем в легочные альвеолы и удаляется из организма вместе с выдыхаемым воздухом.

Вторым, очень важным моментом, связанным, с окислением пировиноградной кислоты, является повторное (пятикратное) отщепление водорода. Здесь следует сказать о наиболее характерной особенности окислительных процессов, происходящих в организме человека, а также животных. Она как раз и заключается в том, что водород не сразу вступает в реакцию с кислородом, доставляемым кровью к клеткам органов и тканей.

В живом организме имеются специальные переносчики водорода. Они как бы принимают его на себя и постепенно, от одного переносчика к другому, переносят водород к кислороду. Благодаря этому энергия образования воды выделяется также постепенно, порциями. А ведь известно, что при соединении водорода с кислородом вода образуется со взрывом - взрывом гремучего газа. Например, было определено, что при образовании 18 граммов воды (ее молекулярный вес-18) освобождается 55 больших калорий. В живом организме энергия образования воды распределяется между многими промежуточными реакциями. Те же 55 больших калорий, конечно, также освобождаются при образовании 18 граммов воды, однако относительно небольшими порциями, которые не могут нанести какой бы то ни было ущерб организму.

Из всех этих расчетов и рассуждений следует один очень важный вывод: наиболее значительнее количество энергии в организме человека, а также высокоорганизованных животных освобождается не при расщеплении белков, жиров м углеводов, входящих в состав пищи в пищеварительном тракте, а в процессе окисления пировиноградной кислоты или других органических веществ при переносе водорода к кислороду, завершающимся образованием воды.

На рисунке: Белки, жиры и углеводы, входящие в состав пищи, расщепляются в желудочно-кишечном тракте под действием пищеварительных соков на составные части. Образовавшиеся соединения разносятся кровью по всему телу (А) и попадают в различные органы, в том числе и в печень (Б).
На рисунке (В) показаны клетки печени с условным изображением происходящих в них процессов.
В результате сложных биохимических процессов в органах и тканях образуются различные органические кислоты. Они показаны в виде геометрических фигур, заполняющих ткань печени (1).
Под действием специальных белков - ферментов - эти органические кислоты расщепляются до конечных продуктов - углекислого газа (СО2) и воды (Н2О). Углекислый газ удаляется из организма через легкие при выдохе (2). Вода (3) образуется благодаря тому, что атомы водорода (2Н), освобождающиеся при расщеплении органических кислот, передаются кислороду (О), поступающему из воздуха, причем передача эта происходит не сразу, а постепенно с помощью специальных ферментов-переносчиков (4). Именно на этапах передачи водорода кислороду высвобождается значительное количество энергии.
Вся образовавшаяся энергия распределяется следующим образом: около 50 процентов энергии превращается в тепло (5); другая же половина энергии накапливается, аккумулируется в виде особых фосфорсодержащих соединений, основным представителем которых является аденозинтрифосфат - АТФ.
При дальнейшем расщеплении фосфорсодержащих соединений также выделяется свободная энергия. Эта энергия может легко превращаться в любой другой вид энергии: механическую (6) энергию, необходимую для деятельности мозга (7), химическую, идущую на образование и выделение различных соков в пищеварительном тракте (8), в энергию, которая необходима организму для «строительства» новых клеток и тканей (9).

ИСТОЧНИКИ ЭНЕРГИИ В ОРГАНИЗМЕ

Каким же образом освобождающаяся при окислении энергия используется организмом? Приблизительно половина энергии рассеивается в виде тепла. Оно крайне необходимо для поддержания постоянной температуры тела. Остальная часть энергии накапливается в виде богатых энергией фосфорных соединений.

К числу таких соединений относится довольно большое количество веществ, в структуру которых входят непрочно связанные остатки фосфорной кислоты. Под влиянием различных ферментов они легко отщепляются, причем разрыв связей сопровождается освобождением большого количества свободной энергии, которая способна перейти а любой другой вид энергии - в механическую, электрическую, химическую, тепловую и т. д.

Когда человек здоров, в составе его мозга, мышц, внутренних органов содержится достаточное количество богатых энергией фосфорных соединений. Расщепление этих веществ позволяет производить нам мышечную работу, обеспечивает энергию передачи возбуждения по нервным волокнам, дает энергию м для других, весьма различных проявлений жизни.

Возможность образования в живом организме богатых энергией фосфорных соединений за счет энергии окисления была впервые доказана в 1930 году. Это одно из самых замечательных открытий в области биохимической энергетики.

В дальнейшем ученые очень обстоятельно разработали проблему накопления, аккумуляции энергии в фосфорных соединениях. Прежде всего исследования показали, что универсальным веществом, накапливающим энергию, является аденозинтрифосфат (сокращенно он называется АТФ). В состав этого вещества входят три остатка фосфорной кислоты, причем два из них непрочно связаны с остальной частью молекулы АТФ. Когда в результате сложных химических превращений такие связи разрываются, то освобождается энергия, необходимая организму для самых различных процессов жизнедеятельности.

Рассмотрим несколько примеров. Представьте себе работающее сердце. Огромное количество энергии требуется для проталкивания крови по сосудам. Энергия сокращения сердечной мышцы черпается из запасов АТФ. Далее во время сокращения сердечной мышцы ее клетки постоянно изнашиваются, разрушаются. Чтобы восстановить их структуру, также необходимы затраты АТФ.

Естественно, что количество АТФ должно все время пополняться. Если сердце по той или иной причине не получит из крови достаточного количества легко окисляемых веществ, «горючего», а также кислорода, необходимых для образования АТФ, то неизбежно пострадает или сила сердечных сокращений или процесс восстановления изнашивающейся ткани сердца, в том и другом случае наступит нарушение сердечной деятельности. Примерно то же самое можно сказать о любом органе и организме в целом.

Еще один пример. Всем известно, какие разнообразные процессы обмена веществ протекают в печени - органе, который образно называют важнейшей биохимической лабораторией организма. Здесь происходит образование конечного продукта азотистого обмена - мочевины, синтез многих белков, в том числе и тех, которые входят в состав крови, окисление и синтез жирных кислот и т. д.

Все процессы биологического синтеза, протекающие в печени, идут с затраюй энергии и требуют постоянного расхода АТФ. При нормальном снабжении печеночных клеток кровью АТФ беспрерывно образуется за счет энергии окислительных процессов, но если снабжение печени кровью нарушится (например, у алкоголиков печеночные клетки замещаются соединительной тканью и в результате развивается цирроз печени) или притекающая кровь будет бедна кислородом, то траты АТФ не смогут своевременно восполняться. Это повлечет за собой постеленное нарушение процессов обмена веществ, происходящих в печени, тяжелое заболевание всего организма.

Итак, для образования и постоянного пополнения АТФ чрезвычайно важно снабжать все ткани кислородом. Но только ли за счет энергии окислительных процессов образуется АТФ? Ведь даже а самых обычных условиях может наступить временный, относительный недостаток в снабжении организма иди отдельных его органов и тканей кислородом. Организм обладает замечательной способностью образовывать АТФ за счет сбраживания углеводов. Этот процесс происходит без потребления кислорода, но он дает организму немного энергии. И хотя эффективность процесса бескислородного распада углеводов невелика, он может на некоторое время поддержать жизнь организма. Правда, к недостатку кислорода очень чувствительны такие важнейшие органы, как мозг, сердце, почки. Поэтому кислородное голодание нарушает а первую очередь деятельность именно этих органов.

Жизнь нашего организма может нормально протекать только при постоянном обмене веществ и энергией с окружающей средой,в движении, бесперебойной деятельности нервной системы и внутренних органов. Все проявления жизни связаны с использованием свободной энергии, которая содержится в клетках организма в виде богатых энергией фосфорных соединений. Непрерывный расход энергии требует постоянного ее пополнения. Вот почему так важно строго соблюдать рациональный режим труда, отдыха, питания - вести здоровый образ жизни.

Наименование параметра Значение
Тема статьи: Обмен энергии
Рубрика (тематическая категория) Медицина

Общие определœения

Обмен веществ и энергии

ЛЕКЦИЯ № 12

Обмен веществ и энергии – совокупность физических, химических, физиологических процессов усвоения питательных веществ в организме с высвобождением энергии. В обмене веществ (метаболизме) выделяют анаболизм и катаболизм.

Анаболизм –б иосинтез органических соединœений из поглощенных питательных веществ (идет с потреблением энергии).

Катаболизм – расщепление сложных компонентов до простых веществ, что обеспечивает энергетические и пластические потребности организма (идет с выделœением энергии).

Для того, чтобы компенсировать потерю тепла и обеспечить выделœение энергии, крайне важно й для поддержания температуры тела при выполнении работы, человеку приходится постоянно принимать пищу. Энергетическая ценность отдельных ее компонентов стандартизирована и выражается в килоджоулях (кДж):

Ø 1г белков обеспечивает выделœение 17 кДж (4,1 ккал)

Ø 1г жиров обеспечивает выделœение 37 кДж (9,3 ккал)

Ø 1г углеводов обеспечивает выделœение 17 кДж (4,1 ккал)

Жизнедеятельность организма обеспечивается энергией за счёт анаэробного и аэробного катаболизма поступающих с пищей белков, жиров и углеводов.

Стоит сказать, что для нормальной жизнедеятельности необходим энергетический баланс поступления и расходования энергии. Поступает энергия в виде запасов, аккумулированных в химических связях белков, жиров и углеводов. При биологическом окислении эта энергия высвобождается и используется для синтеза АТФ.

Выделяемая энергия необходима для того, чтобы:

· предупредить потерю веса;

· поддержать постоянной температуру тела;

· облегчить функциональную активность всœех клеток, тканей, желœез и органов.

Основными факторами , которые оказывают влияние на интенсивность обмена веществ, являются: размеры тела, возраст, пол, климатические условия, включая температуру окружающей среды, тип носимой одежды и характер работы. Очевидно, что уровень обмена веществ зависит от индивидуальной мышечной активности (то есть будет выше у людей физического труда, чем у служащих, ведущих сидячий образ жизни).

Учитывая зависимость отактивности организма и воздействий на него внешней среды различают 3 уровня энергообмена:

· Основной обмен – количество энергии затрачиваемое при полном мышечном покое через 12-14 ч после приема пищи и при окружающей температуре 20-22 (эта энергия тратится на дыхание, кровообращение и деятельность ЦНС). У взрослого человека величина основного обмена в среднем 1 ккал/кг массы в 1 час. При массе тела 70 кг величина основного обмена мужчин около 1700 ккал/сутки, у женщин немного ниже, у детей выше. На уровень основного обмена влияет нервное напряжение, при котором изменяется частота дыхания и сердцебиения, а также сила сердечных сокращений. Уровень основного обмена существенно меняется при поражении щитовидной желœезы. Повышение секреторной активности щитовидной желœезы (гипертиреоз ) вызывает усиление основного обмена. При уменьшении секреторной активности щитовидной желœезы уровень основного обмена сокращается.

· Энерготраты в состоянии относительного покоя – превышают величину основного обмена из-за трат на пищеварение, терморегуляцию вне зоны комфорта и траты на поддержание позы. Для больного (постельный режим) требуется 1200ккал/сутки. Для человека на отдыхе требуется 1800ккал/сутки.

· Энерготраты при различных видах труда – зависят от вида деятельности, которую делят на 4 группы

· люди умственного труда 2200-300 ккал/сутки

· при механизированной работе – 2300-3200 ккал/сутки

· частично механизированная работа – 2500-3400 ккал/сутки

· немеханизированный тяжелый труд – 3500-4000 ккал/сутки, а при спортивной деятельности 4500-6000 ккал/сутки и выше.

Детям в период роста требуется более энергоемкая диета в перечете на 1кг массы тела, чем взрослым.

Большая часть энергии идет не на механическую работу, а расходуется в виде тепла. Часть энергии, идущая на работу принято называть коэффициент полезного действии (КПД). В среднем КПД = 20-25%, у высококвалифицированных спортсменов до 35%.

Основными питательными веществами, которые обеспечивают организм энергией и теплом, являются углеводы и жиры. Белки выполняют эту функцию только при определœенных условиях.

Обмен энергии - понятие и виды. Классификация и особенности категории "Обмен энергии" 2017, 2018.