Примеры использования энергии Солнца на Земле. Солнечные электростанции. Солнечная энергетика. Перспективы развития солнечной энергетики

Солнце – это природный огромный источник энергии. Внутри этого газового шара ежеминутно протекают сотни различных процессов. Без Солнца невозможна жизнь на Земле, так как оно является источником энергии для всех живых организмов. Все земные природные процессы осуществляются благодаря солнечной энергии. Циркуляция атмосферы, круговорот воды, фотосинтез, теплорегуляция на планете – все это было бы невозможным без Солнца. Использование солнечной энергии на Земле такое же привычное явление, как вдох и выдох для человека. Но оно может дать человечеству еще больше. Его успешно можно использовать для получения промышленной энергии, тепловой или электрической.

Потенциал, которым обладает солнечная энергетика

Разработки по использованию солнечной энергии начались в еще в 20 веке. С тех проведено сотни исследований учеными со всех уголков мира. Ими было доказано, что эффективность использования солнечной энергии может быть очень и очень высокой. Данный источник может обеспечить энергоснабжение на всей планете гораздо лучше, чем все существующие на сегодняшний день ресурсы в совокупности. При этом такой вид энергии является общедоступным и бесплатным.

Использование энергии солнечного света

Запасы природных ископаемых, способных обеспечить энергоснабжение на Земле, сокращаются с каждым днем. Поэтому в настоящее время ведутся активные разработки различных способов использования солнечной энергии. Данный ресурс является отличной альтернативой традиционным источникам. Поэтому исследования в этой сфере невероятно важны для общества.

Достижения, которые существуют на данный момент, дали возможность создать системы использования солнечной энергии, которые делаться на два типа:

  • Активные (фотоэлектрические системы, солнечные электростанции и коллекторы).
  • Пассивные (подбор стройматериалов и проектировка помещений для максимального применения энергии солнечного света).

Преобразование и использование солнечной энергии таким образом дало возможность применять неиссякаемый ресурс с высокой продуктивностью и окупаемостью.

Принцип работы пассивных систем

Существует несколько видов пассивного использования солнечной энергии. Большинство из них невероятно просты в применении, но при этом достаточно эффективны. Также существуют и более замысловатые варианты, которые помогают получать больше выгоды. Например:

  • Первое, что приходит на ум, это емкость, в которой хранится вода. Если покрасить ее в темный оттенок, то таким нехитрым образом солнечная энергия будет преобразовываться в тепловую, и вода будет нагреваться.
  • Следующий вариант не под силу выполнить обычному человеку самостоятельно, так как он требует скрупулезного анализа специалиста. Данная технология должна приниматься во внимание еще на этапе проектирования и строительства дома. Основываясь на климатических условиях, здание проектируется таким образом, что само работает как солнечный коллектор. После чего подбираются необходимые материалы, способствующие максимальной аккумуляции энергии солнечных лучей.

Благодаря таким методам становится возможным использование солнечной энергии для отопления и освещения помещений. Также подобные разработки способствуют энергосбережению. Так как подобное проектирование способно не только преобразовывать солнечную энергию, но и сохранять тепло внутри здания, что также позволяет значительно сократить расходы.

Способы активного использования солнечной энергии

Основой данного принципа энергоснабжения являются коллекторы. Такое оборудование поглощает энергию и перерабатывает ее в тепло, с помощью которого можно отапливать дом или подогревать воду, а также преобразовывает солнечную энергию в электрическую. Коллекторы широко применяются как в промышленном объеме, так и на частных участках и сельском хозяйстве.

Помимо коллекторов еще одним оснащением активной системы можно назвать панели с фотоэлементами. Данное устройство позволяет использовать солнечную энергию в быту и в промышленных масштабах. Такие панели очень просты, неприхотливы в обслуживании и долговечны.

Также способом активного применения энергии Солнца являются солнечные электростанции. Они подходят только для масштабного преобразования радиации в тепловую ил электроэнергию. За последние годы они значительно набрали популярность в мире и разработки в этой сфере позволяют расширять возможности и количество таких станций.

Говоря о том, что солнечная энергия помогает экономить на применении традиционных ресурсов, стоит заметить, что подобное преимущество станет действительно полезным людям, обладающим своими частными участками. Собственный дом дает возможность установить оборудование для преобразования энергии, которое сможет удовлетворять, даже если и не полностью, хотя бы часть энергетических потребностей. Это поможет значительно снизить потребление централизованного энергоснабжения и уменьшить расходы.

Солнечная энергия – это отличный источник для таких процессов:

  • Пассивный обогрев и охлаждение дома.

Не следует забывать о том, что Солнце и так греет все, что существует на Земле, и ваш дом не исключение. Поэтому можно усилить благотворное воздействие, внеся на этапе строительства определенные поправки, и использовав специальные техники. Таким образом, вы получите дом с гораздо более комфортной теплорегуляцией без особых вложений.

  • Нагрев воды с помощью солнечной энергии.

Применение энергии солнечных лучей для подогрева воды – это самый простой и дешевый способ, доступный человеку. Подобное оснащение можно купить по адекватным ценам. При этом они смогут окупить себя достаточно быстро, ощутимо снизив расходы на централизованное энергоснабжение.

  • Освещение улиц.

Это самый простой и дешевый способ использования солнечной энергии. Специальные устройства, которые поглощают за день солнечную радиацию, а в темное время суток освещают участки, очень популярны среди владельцев частных домов и сейчас.

Солнечная панель, к сожалению, не отличается всеобщей доступностью. Ее стоимость достаточно высока, но при этом, это удобный и выгодный энергетический ресурс, который успешно можно применять в российских широтах. Но если ваше финансовое положение не позволяет осуществить такую дорогостоящую покупку, вы сможете создать подобные панели самостоятельно.

Как это сделать?

  • Первым делом вам будут нужны солнечные фотоэлементы. В среднем для одной панели их понадобится около 36 штук. Лучше выбирать элементы на монокристаллах, так как у них выше коэффициент полезного действия, и срок эксплуатации дольше.
  • Сама панель производится из фанерного листа. Из него вырезается днище, размер которого вы определяете, смотря на количество фотоэлементов. Далее панель помещается в рамку из брусков.
  • После чего требуется изготовить подложку, на которую будут накладываться фотоэлементы. Это можно сделать из ДВП.
  • Далее вам необходимо сделать отверстия. Обязательно проследите, чтобы они были симметричны.
  • Далее проводится процедура окрашивания и сушки, которая повторяется два раза.
  • После того, как подложка высохнет, на нее выкладываются элементы, и производится распайка. Важный момент – выкладывайте их вверх ногами.
  • В конечном этапе фотоэлементы выкладывают рядами, а потом уже соединяют все в комплексы. Все это по итогу крепится с помощью силикона.

Вот таким несложным способом вы можете создать своими руками оборудование, позволяющее использовать солнечную энергию в быту. Немного усилий и терпения, и у вас все получится.

Использование солнечной энергии в России

На каком этапе развития сейчас находится альтернативная энергетика в России? К сожалению, в нынешнее время это происходит на очень низком уровне. Пока страна не воплощает весь существующий потенциал в жизнь. На это имеет достаточно сильное влияние такой аспект, как наличие больших запасов полезных ископаемых, которые используются для традиционного энергоснабжения.

Тем не менее, успешное использование солнечной энергии в России возможно. Благодаря огромной площади, включающей в себя разные климатические зоны и рельеф, страна имеет возможность активно развивать выработку альтернативной энергии. При грамотном и всестороннем подходе можно обеспечивать весомый процент общего энергоснабжения именно с помощью энергии Солнца.

Без энергии невозможна жизнь на планете. Физический закон сохранения энергии говорит о том, энергия не может возникнуть из ничего и не исчезает бесследно. Она может быть получена из природных ресурсов, таких как уголь, природный газ или уран, и превращена в удобные для нас формы, например, в тепло или свет. В окружающем нас мире можем находить различные формы накопления энергии, но важнейшим для человека является энергия, которую дают солнечные лучи- солнечная энергия.

Солнечная энергия относится к восстанавливаемым источникам энергии, то есть восстанавливается без участия человека, естественным путем. Это один из экологически безопасных энергетических источников, который не загрязняет окружающую среду. Возможности применения солнечной энергии практически неограниченны и ученые всего мира работают над разработкой систем, которые расширяют возможности использования солнечной энергии .

Один квадратный метр Солнца излучает 62 900 кВт энергии. Это примерно соответствует мощности работы 1 миллиона электрических ламп. Впечатляет такая цифра — Солнце дает Земле ежесекундно 80 тысяч миллиардов кВт, т.е в несколько раз больше, чем все электростанции мира. Перед современной наукой стоит задача — научиться наиболее полно и эффективно использовать энергию Солнца, как наиболее безопасную. Ученые считают, что повсеместное использование солнечной энергии — это будущее человечества.

Мировые запасы открытых месторождений угля и газа, при таких темпах их использования, как сегодня, должны истощиться в ближайшие 100 лет. Подсчитано, что в еще не разведанных месторождениях запасов горючих ископаемых хватило бы на 2-3 столетия. Но при этом наши потомки были бы лишены этих энергоносителей, а продукты их сгорания нанесли бы колоссальный ущерб окружающей среде.

Огромный потенциал имеет атомная энергия. Однако, Чернобыльская авария в апреле 1986 года показала, какие серьезные последствия может повлечь использование ядерной энергии. Общественность всего мира признала, что использование атомной энергии в мирных целях экономически оправдано, но следует соблюдать строжайшие меры безопасности при ее использовании.

Следовательно, наиболее чистый, безопасный источник энергии — Солнце!

Солнечная энергия может быть преобразована в полезную энергию посредством использования активных и пассивных солнечных энергетических систем.

Пассивные системы использования солнечной энергии.

Самый примитивный способ пассивного использования солнечной энергии — это окрашенная в темный цвет емкость для воды. Темный цвет, аккумулируя солнечную энергию , превращает ее в тепловую — вода нагревается.

Однако, есть более прогрессивные методы пассивного использования солнечной энергии . Разработаны строительные технологии, которые при проектировании зданий, учета климатических условий, подбора строительных материалов максимально используют солнечную энергию для обогрева или охлаждения, освещения зданий. При таком проектировании сама конструкция здания является коллектором, аккумулирующей солнечную энергию .

Так, в 100г н.э Плиний Младший построил небольшой дом на севере Италии. В одной из комнат окна сделаны из слюды. Оказалось, что эта комната теплее других и на ее обогрев требовалось меньше дров. В этом случае слюда являлась как изолятор, задерживающий тепло.

Современные строительные конструкции учитывают географическое положение зданий. Так, большое количество окон, выходящие на южную сторону, предусматривают в северных регионах, чтобы поступало больше солнечного света и тепла, и ограничивают количество окон с восточной и западной стороны, чтобы ограничить поступление солнечного света летом. В таких зданиях ориентация окон и расположение, тепловая нагрузка и теплоизоляция — единая конструкторская система при проектировании.

Такие здания экологически чистые, энергетически независимые и комфортные. В помещениях много естественного света, более полно ощущается связь с природой, к тому же существенно экономится электроэнергия. Тепло в таких зданиях сохраняется благодаря подобранным теплоизоляционным материалам стен, потолков, полов. Такие первое «солнечные» здания приобрели огромную популярность в Америке после Второй мировой войны. Впоследствии, из-за снижения цен на нефть, интерес к проектировке таких зданий несколько угас. Однако, сейчас, в связи с глобальным экологическим кризисом, наблюдается рост внимания к экологическим проектам с возобновляющимся энергетическим системам возросла вновь.

Активные системы использования солнечной энергии

В основе активных систем использования солнечной энергии применяются солнечные коллекторы. Коллектор, поглощая солнечную энергию , преобразует ее в тепло, которое через теплоноситель обогревает здания, нагревает воду, может преобразовать его в электрическую энергию и т.д. Солнечные коллекторы могут применятся во всех процессах в промышленности, сельском хозяйстве, бытовых нуждах, где используется тепло.

Виды коллекторов

воздушный солнечный коллектор

Это простейший вид солнечных коллекторов. Его конструкция предельно проста и напоминает эффект обычной теплицы, которая есть на любом дачном участке. Проведите небольшой эксперимент. В зимний солнечный день положите на подоконник любой предмет так, чтобы на него падали солнечные лучи и через некоторое время положите на него ладонь. Вы почувствуете, что этот предмет стал теплым. А за окном может быть — 20! Вот на этом принципе и основана работа солнечного воздушного коллектора.

Основной элемент коллектора — теплоизолированная пластина, сделанная из любого материала, который хорошо проводит тепло. Пластина окрашена в темный цвет. Солнечные лучи проходят через прозрачную поверхность, нагревают пластину, а потом потоком воздуха передают тепло в помещение. Воздух проходит благодаря естественной конвенции или при помощи вентилятора, что улучшает теплопередачу.

Однако, недостаток работы этой системы в том, что требуются дополнительные расходы на работу вентилятора. Эти коллекторы работают в течении светового дня, поэтому не могут заменить основной источник отопления. Однако, если вмонтировать коллектор в основной источник отопления или вентиляции, его КПД несоизмеримо возрастает. Солнечные воздушные коллекторы могут использоваться и для опреснения морской воды, что снижает ее себестоимость до 40 евроцентов за куб м.

Солнечные коллекторы могут быть плоскими и вакуумными.

плоский солнечный коллектор

Коллектор состоит из элемента, поглощающего солнечную энергию, покрытия (стекло с пониженным содержанием металла) , трубопровода и термоизолирующего слоя. Прозрачное покрытие защищает корпус от неблагоприятных климатических условий. Внутри корпуса панель поглотителя солнечной энергии (абсорбера) соединена с теплоносителем, который циркулирует по трубам. Трубопровод может быть как в виде решетки, так и в виде серпантина. Теплоноситель движется по ним от входных до выходных патрубков, постепенно нагреваясь. Панель поглотителя изготавливается из металла, хорошо проводящему тепло (алюминий, медь).

Коллектор улавливает тепло, превращая его в тепловую энергию. Такие коллекторы можно вмонтировать в крышу или расположить на крыше здания, а можно расположить их отдельно. Это придаст дизайну участка современный вид.

Вакуумный солнечный коллектор

Вакуумные коллекторы могут использоваться круглый год. Основным элементом коллекторов являются вакуумные трубки. Каждая из них состоит из двух стеклянных труб. Трубы изготавливают из боросиликатного стекла, причем внутренняя покрыта специальным покрытием, которое обеспечивает поглощение тепла с минимальным отражением. Из пространства между трубками выкачан воздух,. Для поддержания вакуума используется бариевый газопоглотитель. В исправном состоянии вакуумная трубка имеет серебристый цвет. Если она выглядит белой, то это значит, что вакуум исчез и трубку надо заменить.

Вакуумный коллектор состоит из комплекса вакуумных трубок (10-30) и осуществляет передачу тепла в накопительный резервуар через незамерзающую жидкость (теплоноситель). КПД вакуумных коллекторов высок:

— при облачной погоде, т.к. вакуумные трубки могут поглощать энергию инфракрасных лучей, которые проходят через облака

— могут работать при минусовых температурах.

Солнечные батареи.

Солнечная батарея — это набор модулей, воспринимающих и преобразующих солнечную энергию, в том числе и тепловых. Но этот термин традиционно закрепился за фитоэлектрическими преобразователями. Поэтому, говоря «солнечная батарея» подразумеваем фитоэлектрическое устройство, преобразующее солнечную энергию в электрическую.

Солнечные батареи способны генерировать электрическую энергию постоянно или аккумулировать ее для дальнейшего использования. Впервые фотоэлектрические батареи были применены в на космических спутниках.

Достоинство солнечных батарей — максимальная простота конструкции, простой монтаж, минимальные требования к облуживанию, большой срок эксплуатации. При установке не требуют дополнительного места. Единственное условие — не затенять их в течении длительного времени и удалять пыль с рабочей поверхности. Современные солнечные батареи способны сохранять работоспособность в течении десятилетий! Трудно найти систему настолько безопасную, эффективную и с таким длительным сроком действия! Они вырабатывают энергию в течении всего светового дня, даже в пасмурную погоду.

Солнечные батареи имеют свои недостатки в применении:

— чувствительность к загрязнениям. (Если расположить батарею под углом 45 градусов, то она будет очищена дождями или снегом, тем самым не потребуется дополнительного обслуживания)

— чувствительность к высокой температуре. (Да, при нагреве до 100 — 125 градусов солнечная батарея может даже отключиться и может потребоваться система охлаждения. Вентиляционная систстема при этом затратит малую долю вырабатываемой батареей энергии. В современных конструкциях солнечных батарей предусмотрена система оттока горячего воздуха.)

— высокая цена. (Принимая во внимание длительный срок службы солнечных батарей, то она не только окупит затраты на ее приобретение, но и сэкономит средства при потреблении электроэнергии, сэкономит тонны традиционных видов топлива при том экологически безопасна)

Использование солнечных энергетических систем в строительстве.

В современной архитектуре все чаще планируют строить дома с встроенными аккумуляторными источниками солнечной энергии. Солнечные батареи устанавливают на крышах зданий или на специальных опорах. Эти здания используют тихий, надежный и безопасный источник энергии — Солнце. Солнечная энергия используется для освещения, отопления помещений, охлаждения воздуха, вентиляции, производства электроэнергии.

Представляем несколько инновационных архитектурных проектов с использованием солнечных систем.

Фасад этого здания сконструирован из стекла, железа, алюминия с встроенными аккумуляторами солнечной энергии. Производимой энергии достаточно, чтобы не только обеспечить жителей дома автономным горячим водоснабжением и электричеством, но и освещать улицу 2,5 км в течении года.

Этот дом спроектировала группа американских студентов. Проект был представлен на конкурс «Проектирование, строительство домов и эксплуатация солнечных батарей». Условия конкурса: представить архитектурный проект жилого дома при его экономической эффективности, энергосбережении и привлекательности. Авторы проекта доказали, что их проект доступен, привлекателен для потребителя, сочетает превосходный дизайн и максимальную эффективность. (перевод с сайта www.solardecathlon.gov)

Использование систем солнечной энергии в мире.

Системы использования солнечной энергии совершенны и экологически безопасны. Во всем мире на них огромный спрос. Во всем мире люди начинают отказываются от использования традиционных видов топлива из-за роста цен на газ и нефть. Так, в Германии в 2004г. 47% домов имели солнечные коллекторы для нагрева воды.

Во многих странах мира разработаны государственные программы развития использования солнечной энергии . В Германии это программа «100 000 солнечных крыш», в США аналогичная программа «Миллион солнечных крыш». В 1996г. архитекторы Германии, Австрии, Великобритании, Греции и др. стран разработали Европейскую хартию о солнечной энергии в строительстве и архитектуре. В Азии лидирует Китай, где на основе современных технологий внедряются системы солнечных коллекторов в строительство зданий и использование солнечной энергии в промышленности.

Факт, который говорит о многом: одним из условий вступления в Евросоюз является рост доли альтернативных источников в энергосистеме страны. В 2000г. в мире работало 60 млн кв км солнечных коллекторов, к 2010г из площадь возросла до 300 млн кв км.

Эксперты отмечают, рынок систем солнечной энергии на территории России, Украины и Белоруссии только формируется. Солнечные системы никогда не производились в больших масштабах, потому что сырьевые ресурсы были настолько дешевы, что дорогостоящее оборудование гелиосистем было не востребовано… Выпуск коллекторов, в России, например, почти полностью прекращен.

В связи с подорожанием традиционных энергоносителей, наметилось оживление интереса с применению солнечных систем. В ряде регионов этих стран, испытывающих дефицит энергоресурсов, принимаются локальные программы по использованию гелиосистем, но широкому потребительскому рынку солнечные системы практически не знакомы.

Главная причина медленного развития рынка продажи и использования солнечных систем является, во-первых, их высокая начальная стоимость, во-вторых, недостаток информации о возможностях солнечных систем, передовых технологиях их использования, о разработчиках и изготовителях гелиосистем. Все это не может дать возможности правильно оценить эффективность применения систем, работающих на солнечной энергии .

Надо иметь в виду, что солнечный коллектор — не конечная продукция. Для получения конечной продукции — тепла, электроэнергии, горячей воды — надо пройти путь от проектирования, монтажа до пуска гелиосистем. Небольшой имеющийся опыт использования солнечных коллекторов показывает, что эта работа не сложнее монтажа традиционного отопления, но экономическая эффективность значительно выше.

В Белоруссии, России, на Украине есть множество фирм, занимающиеся проектировкой и монтажом оборудования отопления, но приоритет имеют сегодня традиционные энергоносители. Развитие экономических процессов, мировой опыт использования систем солнечной энергии показывает, что будущее за альтернативными источниками энергии. На ближайшее будущее можно отметить, что гелиосистемы являются новой, практически не занятой позицией нашего рынка.

Мы живём в мире будущего, хотя не во всех регионах это заметно. В любом случае возможность развития новых источников энергии сегодня всерьёз обсуждается в прогрессивных кругах. Одним из самых перспективных направлений выступает солнечная энергетика.

На данный момент около 1% электроэнергии на Земле получается вследствие переработки солнечного излучения. Так почему мы до сих пор не отказались от других «вредных» способов, и откажемся ли вообще? Предлагаем ознакомиться с нашей статьей и попытаться самостоятельно ответить на этот вопрос.

Как солнечная энергия преобразуется в электричество

Начнём с самого важного – каким образом солнечные лучи перерабатываются в электроэнергию.

Сам процесс носит название «Солнечная генерация» . Наиболее эффективные пути его обеспечения следующие:

  • фотовольтарика;
  • гелиотермальная энергетика;
  • солнечные аэростатные электростанции.

Рассмотрим каждый из них.

Фотовольтарика

В этом случае электрический ток появляется вследствие фотовольтарического эффекта . Принцип такой: солнечный свет попадает на фотоэлемент, электроны поглощают энергию фотонов (частиц света) и приходят в движение. В итоге мы получаем электрическое напряжение.

Именно такой процесс происходит в солнечных панелях, основу которых составляют элементы, преобразующие солнечное излучение в электричество.

Сама конструкция фотовольтарических панелей достаточно гибкая и может иметь разные размеры. Поэтому в использовании они очень практичны. К тому же панели имеют высокие эксплуатационные свойства: устойчивы к воздействию осадков и перепадам температур.

А вот как устроен отдельный модуль солнечной панели :

О применении солнечных батарей в качестве зарядных устройств, источников питания частных домах, для облагораживания городов и в медицинских целях можно почитать в .

Современные солнечные панели и электростанции

Из недавних примеров можно отметить солнечные панели компании SistineSolar . Они могут иметь любой оттенок и текстуру в отличие от традиционных тёмно-синих панелей. А это значит, что ими можно «оформить» крышу дома так, как Вам заблагорассудится.

Другое решение предложили разработчики Tesla. Они выпустили в продажу не просто панели, а полноценный кровельный материл, перерабатывающий солнечную энергию. содержит встроенные солнечные модули и также может иметь самое разнообразное исполнение. При этом сам материал гораздо прочнее обычной кровельной черепицы, у Solar Roof даже гарантия бесконечная.

В качестве примера полноценной СЭС можно привести недавно построенную в Европе станцию с двусторонними панелям. Последние собирают как прямое солнечное излучение, так и отражающее. Это позволяет повысить эффективность солнечной генерации на 30%. Эта станция должна вырабатывать в год около 400 МВт*ч.

Интерес вызывает и крупнейшая плавучая СЭС в Китае . Её мощность составляет 40 МВт. Подобные решения имеют 3 важных преимущества:

  • нет необходимости занимать большие наземные территории, что актуально для Китая;
  • в водоёмах уменьшается испаряемость воды;
  • сами фотоэлементы меньше нагреваются и работают эффективнее.

Кстати, эта плавучая СЭС была построена на месте заброшенного угледобывающего предприятия.

Технология, основанная на фотовольтарическом эффекте, является наиболее перспективной на сегодня, и по оценкам экспертов солнечные панели уже в ближайшие 30-40 лет смогут производить около 20% мировой потребности электроэнергии.

Гелиотермальная энергетика

Тут подход немного другой, т.к. солнечное излучение используется для нагревания сосуда с жидкостью. Благодаря этому она превращается в пар, который вращает турбину, что приводит в выработке электричества.

По такому же принципу работают тепловые электростанции, только жидкость нагревается посредством сжигания угля.

Самый наглядный пример использования данной технологии – это станция Иванпа Солар в пустыне Мохаве. Она является крупнейшей в мире солнечной гелиотермальной электростанцией.

Работает она с 2014 года и не использует никакого топлива для производства электричества – только экологически чистая солнечная энергия.

Котёл с водой располагается в башнях, которые Вы можете видеть в центре конструкции. Вокруг расположено поле из зеркал, направляющих солнечные лучи на вершину башни. При этом компьютер постоянно поворачивает эти зеркала в зависимости от расположения солнца.


Солнечный свет концентрируется на башне

Под воздействием концентрированной солнечной энергии вода в башне нагревается и становится паром. Так возникает давление, и пар начинает вращать турбину, вследствие чего выделяется электричество. Мощность этой станции – 392 мегаватт, что вполне можно сопоставить со средней ТЭЦ в Москве.

Интересно, что подобные станции могут работать и ночью. Это возможно благодаря помещению части разогретого пара в хранилище и постепенном его использовании для вращения турбины.

Солнечные аэростатные электростанции

Это оригинальное решение хоть и не получило широкого применения, но всё же имеет место быть.

Сама установка состоит из 4 основных частей:

  • Аэростат – располагается в небе, собирая солнечное излучение. Внутрь шара поступает вода, которая быстро нагревается, становясь паром.
  • Паропровод – по нему пар под давлением спускается к турбине, заставляя её вращаться.
  • Турбина – под воздействием потока пара она вращается, вырабатывая электрическую энергию.
  • Конденсатор и насос – пар, прошедший через турбину, конденсируется в воду и поднимается в аэростат с помощью насоса, где снова разогревается до парообразного состояния.

В чём преимущества солнечной энергетики

  • Солнце будет давать нам свою энергию ещё несколько миллиардов лет. При этом людям не нужно тратить средства и ресурсы для её добычи.
  • Генерация солнечной энергии – полностью экологичный процесс, не имеющий рисков для природы.
  • Автономность процесса. Сбор солнечного света и выработка электроэнергии проходит с минимальным участием человека. Единственное, что нужно делать, это следить за чистотой рабочих поверхностей или зеркал.
  • Выработавшие свой ресурс солнечные панели могут быть переработаны и снова использованы в производстве.

Проблемы развития солнечной энергетики

Несмотря на реализацию идей по поддержанию работы солнечных электростанций в ночное время, никто не застрахован от капризов природы. Затянутое облаками небо в течение нескольких дней значительно понижает выработку электричества, а ведь населению и предприятиям необходима его бесперебойная подача.

Строительство солнечной электростанции – удовольствие не из дешёвых. Это обусловлено необходимостью применять редкие элементы в их конструкции. Не все страны готовы растрачивать бюджеты на менее мощные электростанции, когда есть рабочие ТЭС и АЭС.

Для размещения таких установок необходимы большие площади, причём в местах, где солнечное излучение имеет достаточный уровень.

Как развита солнечная энергетика в России

К сожалению, в нашей стране пока во всю жгут уголь, газ и нефть, и наверняка Россия будет в числе последних, кто полностью перейдёт на альтернативную энергетику.

На сегодняшний день солнечная генерация составляет всего 0,03% энергобаланса РФ . Для сравнения в той же Германии этот показатель составляет более 20%. Частные предприниматели не заинтересованы во вложении средств в солнечную энергетику из-за долгой окупаемости и не такой уж высокой рентабельности, ведь газ у нас обходится гораздо дешевле.

В экономически развитых Московской и Ленинградской областях солнечная активность на низком уровне. Там строительство солнечных электростанций просто нецелесообразно. А вот южные регионы довольно перспективны.

Министерство образования Республики Беларусь

Учреждение образования

«Белорусский государственный педагогический университет имени Максима Танка»

Кафедра общей и теоретической физики

Курсовая работа по общей физике

Солнечная энергия и перспективы ее использования

Студентки 321 группы

физического факультета

Лешкевич Светлана Валерьевна

Научный руководитель:

Федорков Чеслав Михайлович

Минск, 2009


Введение

1. Общие сведения о солнце

2. Солнце – источник энергии

2.1 Исследование солнечной энергии

2.2 Потенциал солнечной энергии

3. Использование солнечной энергии

3.1 Пассивное использование солнечной энергии

3.2 Активное использование солнечной энергии

3.2.1 Солнечные коллекторы и их виды

3.2.2 Солнечные системы

3.2.3 Солнечные тепловые электростанции

3.3 Фотоэлектрические системы

4. Солнечная архитектура

Заключение

Список использованных источников


Введение

Солнце играет исключительную роль в жизни Земли. Весь органический мир нашей планеты обязан Солнцу своим существованием. Солнце – это не только источник света и тепла, но и первоначальный источник многих других видов энергии (энергии нефти, угля, воды, ветра).

С момента появления на земле человек начал использовать энергию солнца. По археологическим данным известно, что для жилья предпочтение отдавали тихим, закрытым от холодных ветров и открытых солнечным лучам местам.

Пожалуй, первой известной гелиосистемой можно считать статую Аменхотепа III, относящуюся к XV веку до н.э. Внутри статуи располагалась система воздушных и водяных камер, которые под солнечными лучами приводили в движение спрятанный музыкальный инструмент. В Древней Греции поклонялись Гелиосу. Имя этого бога сегодня легло в основу многих терминов, связанных с солнечной энергетикой.

Проблема обеспечения электрической энергией многих отраслей мирового хозяйства, постоянно растущих потребностей населения Земли становится сейчас все более насущной.

1. Общие сведения о Солнце

Солнце – центральное тело Солнечной системы, раскаленный плазменный шар, типичная звезда-карлик спектрального класса G2.

Характеристики Солнца

1. Масса M S ~2*10 23 кг

2. R S ~629 тыс. км

3. V= 1,41*10 27 м 3 , что почти в 1300 тыс. раз превосходит объем Земли,

4. средняя плотность 1,41*10 3 кг/м 3 ,

5. светимость L S =3,86*10 23 кВт,

6. эффективная температура поверхности (фотосфера) 5780 К,

7. период вращения (синодический) изменяется от 27 сут на экваторе до 32 сут. у полюсов,

8. ускорение свободного падения 274 м/с 2 (при таком огромном ускорении силы тяжести человек массой 60 кг весил бы более 1,5 т.).

Строение Солнца

В центральной части Солнца находится источник его энергии, или, говоря образным языком, та “печка”, которая нагревает его и не даёт ему остыть. Эта область называется ядром (см. рис.1). В ядре, где температура достигает 15 МК, происходит выделение энергии. Ядро имеет радиус не более четверти общего радиуса Солнца. Однако в его объёме сосредоточена половина солнечной массы и выделяется практически вся энергия, которая поддерживает свечение Солнца.

Сразу вокруг ядра начинается зона лучистой передачи энергии, где она распространяется через поглощение и излучение веществом порций света – квантов. Кванту требуется очень много времени, чтобы просочиться через плотное солнечное вещество наружу. Так что если бы “печка” внутри Солнца вдруг погасла, то мы узнали бы об этом только миллионы лет спустя.


Рис. 1 Строение Солнца

На своём пути через внутренние солнечные слои поток энергии встречает такую область, где непрозрачность газа сильно возрастает. Это конвективная зона Солнца. Здесь энергия передаётся уже не излучением, а конвекцией. Конвективная зона начинается примерно на расстоянии 0,7 радиуса от центра и простирается практически до самой видимой поверхности Солнца (фотосферы), где перенос основного потока энергии вновь становится лучистым.

Фотосфера – это излучающая поверхность Солнца, которая имеет зернистую структуру, называемую грануляцией. Каждое такое "зерно" размером почти с Германию и представляет собой поднявшийся на поверхность поток горячего вещества. На фотосфере часто можно увидеть относительно небольшие темные области - солнечные пятна. Они на 1500˚С холоднее окружающей их фотосферы, температура которой достигает 5800˚С. Из-за разницы температур с фотосферой эти пятна и кажутся при наблюдении в телескоп совершенно черными. Над фотосферой расположен следующий, более разряженный слой, называемый хромосферой, то есть "окрашенной сферой". Такое название хромосфера получила благодаря своему красному цвету. И, наконец, над ней находится очень горячая, но и чрезвычайно разреженная часть солнечной атмосферы - корона.

2. Солнце – источник энергии

Наше Солнце – это огромный светящийся газовый шар, внутри которого протекают сложные процессы и в результате непрерывно выделяется энергия. Энергия Солнца является источником жизни на нашей планете. Солнце нагревает атмосферу и поверхность Земли. Благодаря солнечной энергии дуют ветры, осуществляется круговорот воды в природе, нагреваются моря и океаны, развиваются растения, животные имеют корм. Именно благодаря солнечному излучению на Земле существуют ископаемые виды топлива. Солнечная энергия может быть преобразована в теплоту или холод, движущую силу и электричество.

Солнце испаряет воду с океанов, морей, с земной поверхности. Оно превращает эту влагу в водяные капли, образуя облака и туманы, а затем заставляет её снова падать на Землю в виде дождя, снега, росы или инея, создавая, таким образом, гигантский круговорот влаги в атмосфере.

Солнечная энергия является источником общей циркуляции атмосферы и циркуляции воды в океанах. Она как бы создаёт гигантскую систему водяного и воздушного отопления нашей планеты, перераспределяя тепло по земной поверхности.

Солнечный свет, попадая на растения, вызывает у него процесс фотосинтеза, определяет рост и развитие растений; попадая на почву, он превращается в тепло, нагревает её, формирует почвенный климат, давая тем самым жизненную силу находящимся в почве семенам растений, микроорганизмам и населяющим её живым существам, которые без этого тепла пребывали бы в состоянии анабиоза (спячки).

Солнце излучает огромное количество энергии - приблизительно 1,1x10 20 кВт·ч в секунду. Киловатт·час - это количество энергии, необходимое для работы лампочки накаливания мощностью 100 ватт в течение 10 часов. Внешние слои атмосферы Земли перехватывают приблизительно одну миллионную часть энергии, излучаемой Солнцем, или приблизительно 1500 квадрильонов (1,5 x 10 18) кВт·ч ежегодно. Однако только 47% всей энергии, или приблизительно 700 квадрильонов (7 x 10 17) кВт·ч, достигает поверхности Земли. Остальные 30% солнечной энергии отражается обратно в космос, примерно 23% испаряют воду, 1% энергии приходится на волны и течения и 0,01% - на процесс образования фотосинтеза в природе.

2.1 Исследование солнечной энергии

Почему Солнце светит и не остывает уже миллиарды лет? Какое «топливо» дает ему энергию? Ответы на этот вопрос ученые искали веками, и только в начале XX века было найдено правильное решение. Теперь известно, что, как и другие звезды, светит благодаря протекающим в его недрах термоядерным реакциям.

Если ядра атомов лёгких элементов сольются в ядро атома более тяжелого элемента, то масса нового окажется меньше, чем суммарная масса тех, из которых оно образовалось. Остаток массы превращается в энергию, которую уносят частицы, освободившиеся в ходе реакции. Эта энергия почти полностью переходит в тепло. Такая реакция синтеза атомных ядер может происходить только при очень высоком давлении и температуре свыше 10 млн. градусов. Поэтому она и называется термоядерной.

Основное вещество, составляющее Солнце, - водород, на его долю приходится около 71% всей массы светила. Почти 27% принадлежит гелию, а остальные 2% - более тяжелым элементам, таким как углерод, азот, кислород и металлы. Главным «топливом» Солнца служит именно водород. Из четырех атомов водорода в результате цепочки превращений образуется один атом гелия. А из каждого грамма водорода, участвующего в реакции, выделяется 6x10 11 Дж энергии! На Земле такого количества энергии хватило бы для того, чтобы нагреть от температуры 0º C до точки кипения 1000 м 3 воды.

2.2 Потенциал солнечной энергии

Солнце обеспечивает нас в 10 000 раз большим количеством бесплатной энергии, чем фактически используется во всем мире. Только на мировом коммерческом рынке покупается и продается чуть меньше 85 триллионов (8,5 x 10 13) кВт·ч энергии в год. Поскольку невозможно проследить за всем процессом в целом, нельзя с уверенностью сказать, сколько некоммерческой энергии потребляют люди (например, сколько древесины и удобрения собирается и сжигается, какое количество воды используется для производства механической или электрической энергии). Некоторые эксперты считают, что такая некоммерческая энергия составляет одну пятую часть всей используемой энергии. Но даже если это так, то общая энергия, потребляемая человечеством в течение года, составляет только приблизительно одну семитысячную часть солнечной энергии, попадающей на поверхность Земли в тот же период.

В развитых странах, например, в США, потребление энергии составляет примерно 25 триллионов (2.5 x 10 13) кВт·ч в год, что соответствует более чем 260 кВт·ч на человека в день. Данный показатель является эквивалентом ежедневной работы более чем ста лампочек накаливания мощностью 100 Вт в течение целого дня. Среднестатистический гражданин США потребляет в 33 раза больше энергии, чем житель Индии, в 13 раз больше, чем китаец, в два с половиной раза больше, чем японец и вдвое больше, чем швед.

Использование энергии Солнца на Земле краткий доклад, расскажет Вам о возможностях ее применения с пользой для человека.

Использование Солнечной энергии на Земле

Солнце представляет собой светящийся огромный газовый шар, в котором протекают достаточно сложные процессы и постоянно выделяется энергия. Благодаря ей существует жизнь на нашей планете: нагревается атмосфера и поверхность планеты, дуют ветра, нагреваются океаны и моря, произрастают растения и так далее.

Солнечная энергия способствует образованию ископаемым видам топлива, преобразовывается в теплоту и холод, электричество и движущую силу. Светило испаряет воду, влагу превращает в водные капли, образует туманы и облака. Одним словом, энергия Солнца создает гигантский круговорот влаги на планете, систему воздушного и водяного отопления планеты.

Когда солнечный свет попадает на растения, то вызывает у них процесс фотосинтеза, рост и развитие. Прогревая почву, он формирует ее климат, давая жизненную силу микроорганизмам, семенам растений и все существам, которые населяют почву. Без солнечной энергии живые организмы были бы в состоянии спячки (анабиоза).

Примеры использования солнечной энергии в народном хозяйстве

Солнечная энергия — это восстанавливаемый естественным путем источник энергии и, что важно, экологически безопасный. Ученые со всего мира работают над расширением возможности ее использования. Во многих странах созданы государственные программы для разработки технологий применения солнечной энергии.

Наибольшее потребление солнечной энергии наблюдается в Турции и Израиле. А рекордное число оборудованных домов системой солнечного нагрева воды находится на Кипре.

В сельскохозяйственной деятельности, а именно в агропромышленном комплексе, также применяется солнечная энергия. Планируется внедрить ее во все отрасли народного хозяйства. Свободные площади стен и крыш домов, хозяйственных построек позволяют накапливать достаточные количества электроэнергии, причем бесплатной. Фотоэлектрические системы можно применять для работы электропастуха на выпасах, насосов, электроножей, медогонок на пасеке, для обеспечения жилых зданий электричеством.

Воздушные коллекторы, работающие на солнечной энергии, создают среду для проживания людей и сельскохозяйственных животных, а также поддерживают показатели влажности и температуры на одном, заданном уровне.

Теплицы и парники, оборудованные гелиопанелями, накапливают и сохраняют тепло, обеспечивая микроклимат для растений.

Устройства на основе солнечной энергии применяются для проветривания и отопления овоще- и зернохранилищ, поддерживая заданные параметры человеком.

Надеемся, что «Использование энергии Солнца» реферат помог Вам подготовиться к занятию. А свое сообщение о солнечной энергии Вы можете оставить через форму комментариев ниже.