Курсовая работа: Солнечная энергия и перспективы ее использования. Как используют солнечную энергию

Солнечная энергетика - активно развивающееся направление в энергоснабжении частных и общественных зданий. Каковы плюсы и минусы такого природного источника энергии, как солнечное излучение?

Преимущества солнечной энергии

1. Возобновляемость

Говоря о солнечной энергии, в первую очередь, необходимо упомянуть, что это - возобновляемый источник энергии, в отличие от ископаемых видов топлива - угля, нефти, газа, которые не восстанавливаются. По данным NASA еще порядка 6.5 млрд. лет жителям Земли не о чем беспокоиться - приблизительно столько Солнце будет согревать нашу планету своими лучами до тех пор, пока не взорвется.

2. Обильность

Потенциал солнечной энергии огромен - поверхность Земли облучается 120 тыс. тераваттами солнечного света, а это в 20 тыс. раз превышает общемировую потребность в ней.

3. Постоянство

Кроме того, солярная энергия неисчерпаема и постоянна - ее нельзя перерасходовать в процессе удовлетворения нужд человечества в энергоносителях, так что ее хватит в избытке и на долю будущих поколений.

4. Доступность

Помимо прочих достоинств солнечной энергии, она доступна в каждой точке мира - не только в экваториальной зоне Земли, но и в северных широтах. Скажем, Германия на данный момент занимает первое место в мире по использованию энергии солнца и обладает максимальным ее потенциалом.

5. Экологическая чистота

В свете последних тенденций в борьбе за экологическую чистоту Земли, солнечная энергетика - это наиболее перспективная отрасль, которая частично заменяет энергию, получаемую от невозобновляемых топливных ресурсов и, тем самым, выступает принципиальным шагом на пути защиты климата от глобального потепления. Производство, транспортировка, монтаж и использование солнечных электростанций практически не сопровождается вредными выбросами в атмосферу. Даже если они и присутствуют в незначительной мере, то по сравнению с традиционными источниками энергии - это почти что нулевое воздействие на окружающую среду.

Министерство образования Республики Беларусь

Учреждение образования

«Белорусский государственный педагогический университет имени Максима Танка»

Кафедра общей и теоретической физики

Курсовая работа по общей физике

Солнечная энергия и перспективы ее использования

Студентки 321 группы

физического факультета

Лешкевич Светлана Валерьевна

Научный руководитель:

Федорков Чеслав Михайлович

Минск, 2009


Введение

1. Общие сведения о солнце

2. Солнце – источник энергии

2.1 Исследование солнечной энергии

2.2 Потенциал солнечной энергии

3. Использование солнечной энергии

3.1 Пассивное использование солнечной энергии

3.2 Активное использование солнечной энергии

3.2.1 Солнечные коллекторы и их виды

3.2.2 Солнечные системы

3.2.3 Солнечные тепловые электростанции

3.3 Фотоэлектрические системы

4. Солнечная архитектура

Заключение

Список использованных источников


Введение

Солнце играет исключительную роль в жизни Земли. Весь органический мир нашей планеты обязан Солнцу своим существованием. Солнце – это не только источник света и тепла, но и первоначальный источник многих других видов энергии (энергии нефти, угля, воды, ветра).

С момента появления на земле человек начал использовать энергию солнца. По археологическим данным известно, что для жилья предпочтение отдавали тихим, закрытым от холодных ветров и открытых солнечным лучам местам.

Пожалуй, первой известной гелиосистемой можно считать статую Аменхотепа III, относящуюся к XV веку до н.э. Внутри статуи располагалась система воздушных и водяных камер, которые под солнечными лучами приводили в движение спрятанный музыкальный инструмент. В Древней Греции поклонялись Гелиосу. Имя этого бога сегодня легло в основу многих терминов, связанных с солнечной энергетикой.

Проблема обеспечения электрической энергией многих отраслей мирового хозяйства, постоянно растущих потребностей населения Земли становится сейчас все более насущной.

1. Общие сведения о Солнце

Солнце – центральное тело Солнечной системы, раскаленный плазменный шар, типичная звезда-карлик спектрального класса G2.

Характеристики Солнца

1. Масса M S ~2*10 23 кг

2. R S ~629 тыс. км

3. V= 1,41*10 27 м 3 , что почти в 1300 тыс. раз превосходит объем Земли,

4. средняя плотность 1,41*10 3 кг/м 3 ,

5. светимость L S =3,86*10 23 кВт,

6. эффективная температура поверхности (фотосфера) 5780 К,

7. период вращения (синодический) изменяется от 27 сут на экваторе до 32 сут. у полюсов,

8. ускорение свободного падения 274 м/с 2 (при таком огромном ускорении силы тяжести человек массой 60 кг весил бы более 1,5 т.).

Строение Солнца

В центральной части Солнца находится источник его энергии, или, говоря образным языком, та “печка”, которая нагревает его и не даёт ему остыть. Эта область называется ядром (см. рис.1). В ядре, где температура достигает 15 МК, происходит выделение энергии. Ядро имеет радиус не более четверти общего радиуса Солнца. Однако в его объёме сосредоточена половина солнечной массы и выделяется практически вся энергия, которая поддерживает свечение Солнца.

Сразу вокруг ядра начинается зона лучистой передачи энергии, где она распространяется через поглощение и излучение веществом порций света – квантов. Кванту требуется очень много времени, чтобы просочиться через плотное солнечное вещество наружу. Так что если бы “печка” внутри Солнца вдруг погасла, то мы узнали бы об этом только миллионы лет спустя.


Рис. 1 Строение Солнца

На своём пути через внутренние солнечные слои поток энергии встречает такую область, где непрозрачность газа сильно возрастает. Это конвективная зона Солнца. Здесь энергия передаётся уже не излучением, а конвекцией. Конвективная зона начинается примерно на расстоянии 0,7 радиуса от центра и простирается практически до самой видимой поверхности Солнца (фотосферы), где перенос основного потока энергии вновь становится лучистым.

Фотосфера – это излучающая поверхность Солнца, которая имеет зернистую структуру, называемую грануляцией. Каждое такое "зерно" размером почти с Германию и представляет собой поднявшийся на поверхность поток горячего вещества. На фотосфере часто можно увидеть относительно небольшие темные области - солнечные пятна. Они на 1500˚С холоднее окружающей их фотосферы, температура которой достигает 5800˚С. Из-за разницы температур с фотосферой эти пятна и кажутся при наблюдении в телескоп совершенно черными. Над фотосферой расположен следующий, более разряженный слой, называемый хромосферой, то есть "окрашенной сферой". Такое название хромосфера получила благодаря своему красному цвету. И, наконец, над ней находится очень горячая, но и чрезвычайно разреженная часть солнечной атмосферы - корона.

2. Солнце – источник энергии

Наше Солнце – это огромный светящийся газовый шар, внутри которого протекают сложные процессы и в результате непрерывно выделяется энергия. Энергия Солнца является источником жизни на нашей планете. Солнце нагревает атмосферу и поверхность Земли. Благодаря солнечной энергии дуют ветры, осуществляется круговорот воды в природе, нагреваются моря и океаны, развиваются растения, животные имеют корм. Именно благодаря солнечному излучению на Земле существуют ископаемые виды топлива. Солнечная энергия может быть преобразована в теплоту или холод, движущую силу и электричество.

Солнце испаряет воду с океанов, морей, с земной поверхности. Оно превращает эту влагу в водяные капли, образуя облака и туманы, а затем заставляет её снова падать на Землю в виде дождя, снега, росы или инея, создавая, таким образом, гигантский круговорот влаги в атмосфере.

Солнечная энергия является источником общей циркуляции атмосферы и циркуляции воды в океанах. Она как бы создаёт гигантскую систему водяного и воздушного отопления нашей планеты, перераспределяя тепло по земной поверхности.

Солнечный свет, попадая на растения, вызывает у него процесс фотосинтеза, определяет рост и развитие растений; попадая на почву, он превращается в тепло, нагревает её, формирует почвенный климат, давая тем самым жизненную силу находящимся в почве семенам растений, микроорганизмам и населяющим её живым существам, которые без этого тепла пребывали бы в состоянии анабиоза (спячки).

Солнце излучает огромное количество энергии - приблизительно 1,1x10 20 кВт·ч в секунду. Киловатт·час - это количество энергии, необходимое для работы лампочки накаливания мощностью 100 ватт в течение 10 часов. Внешние слои атмосферы Земли перехватывают приблизительно одну миллионную часть энергии, излучаемой Солнцем, или приблизительно 1500 квадрильонов (1,5 x 10 18) кВт·ч ежегодно. Однако только 47% всей энергии, или приблизительно 700 квадрильонов (7 x 10 17) кВт·ч, достигает поверхности Земли. Остальные 30% солнечной энергии отражается обратно в космос, примерно 23% испаряют воду, 1% энергии приходится на волны и течения и 0,01% - на процесс образования фотосинтеза в природе.

2.1 Исследование солнечной энергии

Почему Солнце светит и не остывает уже миллиарды лет? Какое «топливо» дает ему энергию? Ответы на этот вопрос ученые искали веками, и только в начале XX века было найдено правильное решение. Теперь известно, что, как и другие звезды, светит благодаря протекающим в его недрах термоядерным реакциям.

Если ядра атомов лёгких элементов сольются в ядро атома более тяжелого элемента, то масса нового окажется меньше, чем суммарная масса тех, из которых оно образовалось. Остаток массы превращается в энергию, которую уносят частицы, освободившиеся в ходе реакции. Эта энергия почти полностью переходит в тепло. Такая реакция синтеза атомных ядер может происходить только при очень высоком давлении и температуре свыше 10 млн. градусов. Поэтому она и называется термоядерной.

Основное вещество, составляющее Солнце, - водород, на его долю приходится около 71% всей массы светила. Почти 27% принадлежит гелию, а остальные 2% - более тяжелым элементам, таким как углерод, азот, кислород и металлы. Главным «топливом» Солнца служит именно водород. Из четырех атомов водорода в результате цепочки превращений образуется один атом гелия. А из каждого грамма водорода, участвующего в реакции, выделяется 6x10 11 Дж энергии! На Земле такого количества энергии хватило бы для того, чтобы нагреть от температуры 0º C до точки кипения 1000 м 3 воды.

2.2 Потенциал солнечной энергии

Солнце обеспечивает нас в 10 000 раз большим количеством бесплатной энергии, чем фактически используется во всем мире. Только на мировом коммерческом рынке покупается и продается чуть меньше 85 триллионов (8,5 x 10 13) кВт·ч энергии в год. Поскольку невозможно проследить за всем процессом в целом, нельзя с уверенностью сказать, сколько некоммерческой энергии потребляют люди (например, сколько древесины и удобрения собирается и сжигается, какое количество воды используется для производства механической или электрической энергии). Некоторые эксперты считают, что такая некоммерческая энергия составляет одну пятую часть всей используемой энергии. Но даже если это так, то общая энергия, потребляемая человечеством в течение года, составляет только приблизительно одну семитысячную часть солнечной энергии, попадающей на поверхность Земли в тот же период.

В развитых странах, например, в США, потребление энергии составляет примерно 25 триллионов (2.5 x 10 13) кВт·ч в год, что соответствует более чем 260 кВт·ч на человека в день. Данный показатель является эквивалентом ежедневной работы более чем ста лампочек накаливания мощностью 100 Вт в течение целого дня. Среднестатистический гражданин США потребляет в 33 раза больше энергии, чем житель Индии, в 13 раз больше, чем китаец, в два с половиной раза больше, чем японец и вдвое больше, чем швед.

3. Использование солнечной энергии

Солнечная радиация может быть преобразована в полезную энергию, используя так называемые активные и пассивные солнечные системы. Пассивные системы получаются с помощью проектирования зданий и подбора строительных материалов таким образом, чтобы максимально использовать энергию Солнца. К активным солнечным системам относятся солнечные коллекторы. Также в настоящее время ведутся разработки фотоэлектрических систем - это системы, которые преобразовывают солнечную радиацию непосредственно в электричество.

Солнечная энергия преобразуется в полезную энергию и косвенным образом, трансформируясь в другие формы энергии, например, энергию биомассы, ветра или воды. Энергия Солнца "управляет" погодой на Земле. Большая доля солнечной радиации поглощается океанами и морями, вода в которых нагревается, испаряется и в виде дождей выпадает на землю, "питая" гидроэлектростанции. Ветер, необходимый ветротурбинам, образуется вследствие неоднородного нагревания воздуха. Другая категория возобновляемых источников энергии, возникающих благодаря энергии Солнца - биомасса. Зеленые растения поглощают солнечный свет, в результате фотосинтеза в них образуются органические вещества, из которых впоследствии можно получить тепловую и электрическую энергию. Таким образом, энергия ветра, воды и биомассы является производной солнечной энергии.

Энергия – это движущая сила любого производства. Тот факт, что в распоряжении человека оказалось большое количество относительно дешевой энергии, в значительной степени способствовало индустриализации и развитию общества.

3.1 Пассивное использование солнечной энергии

солнечная энергия тепловая электростанция

Пассивные солнечные здания - это те, проект которых разработан с максимальным учетом местных климатических условий, и где применяются соответствующие технологии и материалы для обогрева, охлаждения и освещения здания за счет энергии Солнца. К ним относятся традиционные строительные технологии и материалы, такие как изоляция, массивные полы, обращенные к югу окна. Такие жилые помещения могут быть построены в некоторых случаях без дополнительных затрат. В других случаях возникшие при строительстве дополнительные расходы могут быть скомпенсированы снижением энергозатрат. Пассивные солнечные здания являются экологически чистыми, они способствуют созданию энергетической независимости и энергетически сбалансированному будущему.

В пассивной солнечной системе сама конструкция здания выполняет роль коллектора солнечной радиации. Это определение соответствует большинству наиболее простых систем, где тепло сохраняется в здании благодаря его стенам, потолкам или полам. Есть также системы, где предусмотрены специальные элементы для накопления тепла, вмонтированные в конструкцию здания (например, ящики с камнями или заполненные водой баки или бутыли). Такие системы также классифицируются как пассивные солнечные.

3.2 Активное использование солнечной энергии

Активное использование солнечной энергии осуществляется с помощью солнечных коллекторов и солнечных систем.

3.2.1 Солнечные коллекторы и их виды

В основе многих солнечных энергетических систем лежит применение солнечных коллекторов. Коллектор поглощает световую энергию Солнца и преобразует ее в тепло, которое передается теплоносителю (жидкости или воздуху) и затем используется для обогрева зданий, нагрева воды, производства электричества, сушки сельскохозяйственной продукции или приготовления пищи. Солнечные коллекторы могут применяться практически во всех процессах, использующих тепло.

Технология изготовления солнечных коллекторов достигла практически современного уровня в 1908 году, когда Вильям Бейли из американской "Carnegie Steel Company" изобрел коллектор с теплоизолированным корпусом и медными трубками. Этот коллектор весьма походил на современную термосифонную систему. К концу первой мировой войны Бейли продал 4 000 таких коллекторов, а бизнесмен из Флориды, купивший у него патент, к 1941 году продал почти 60 000 коллекторов.

Типичный солнечный коллектор накапливает солнечную энергию в установленных на крыше здания модулях трубок и металлических пластин, окрашенных в черный цвет для максимального поглощения радиации. Они заключены в стеклянный или пластмассовый корпус и наклонены к югу, чтобы улавливать максимум солнечного света. Таким образом, коллектор представляет собой миниатюрную теплицу, накапливающую тепло под стеклянной панелью. Поскольку солнечная радиация распределена по поверхности, коллектор должен иметь большую площадь.

Существуют солнечные коллекторы различных размеров и конструкций в зависимости от их применения. Они могут обеспечивать хозяйство горячей водой для стирки, мытья и приготовления пищи, либо использоваться для предварительного нагрева воды для существующих водонагревателей. В настоящее время рынок предлагает множество различных моделей коллекторов.

Интегрированный коллектор

Простейший вид солнечного коллектора - это "емкостной" или "термосифонный коллектор", получивший это название потому, что коллектор одновременно является и теплоаккумулирующим баком, в котором нагревается и хранится "одноразовая" порция воды. Такие коллекторы используются для предварительного нагрева воды, которая затем нагревается до нужной температуры в традиционных установках, например, в газовых колонках. В условиях домашнего хозяйства предварительно подогретая вода поступает в бак-накопитель. Благодаря этому снижается потребление энергии на последующий ее нагрев. Такой коллектор - недорогая альтернатива активной солнечной водонагревательной системе, не использующая движущихся частей (насосов), требующая минимального техобслуживания, с нулевыми эксплуатационными расходами.

Плоские коллекторы

Плоские коллекторы - самый распространенный вид солнечных коллекторов, используемых в бытовых водонагревательных и отопительных системах. Обычно этот коллектор представляет собой теплоизолированный металлический ящик со стеклянной либо пластмассовой крышкой, в который помещена окрашенная в черный цвет пластина абсорбера (поглотителя). Остекление может быть прозрачным либо матовым. В плоских коллекторах обычно используется матовое, пропускающее только свет, стекло с низким содержанием железа (оно пропускает значительную часть поступающего на коллектор солнечного света). Солнечный свет попадает на тепловоспринимающую пластину, а благодаря остеклению снижаются потери тепла. Дно и боковые стенки коллектора покрывают теплоизолирующим материалом, что еще больше сокращает тепловые потери.

Плоские коллекторы делятся на жидкостные и воздушные. Оба вида коллекторов бывают остекленными или неостекленными.

Солнечные трубчатые вакуумированные коллекторы

Традиционные простые плоские солнечные коллекторы были спроектированы для применения в регионах с теплым солнечным климатом. Они резко теряют в эффективности в неблагоприятные дни - в холодную, облачную и ветреную погоду. Более того, вызванные погодными условиями конденсация и влажность приводят к преждевременному износу внутренних материалов, а это, в свою очередь, - к ухудшению эксплуатационных качеств системы и ее поломкам. Эти недостатки устраняются путем использования вакуумированных коллекторов.

Вакуумированные коллекторы нагревают воду для бытового применения там, где нужна вода более высокой температуры. Солнечная радиация проходит сквозь наружную стеклянную трубку, попадает на трубку-поглотитель и превращается в тепло. Оно передается жидкости, протекающей по трубке. Коллектор состоит из нескольких рядов параллельных стеклянных трубок, к каждой из которых прикреплен трубчатый поглотитель (вместо пластины-поглотителя в плоских коллекторах) с селективным покрытием. Нагретая жидкость циркулирует через теплообменник и отдает тепло воде, содержащейся в баке-накопителе.

Вакуум в стеклянной трубке - лучшая из возможных теплоизоляций для коллектора - снижает потери тепла и защищает поглотитель и теплоотводящую трубку от неблагоприятных внешних воздействий. Результат - отличные рабочие характеристики, превосходящие любой другой вид солнечного коллектора.

Фокусирующие коллекторы

Фокусирующие коллекторы (концентраторы) используют зеркальные поверхности для концентрации солнечной энергии на поглотителе, который также называется "теплоприемник". Достигаемая ими температура значительно выше, чем на плоских коллекторах, однако они могут концентрировать только прямое солнечное излучение, что приводит к плохим показателям в туманную или облачную погоду. Зеркальная поверхность фокусирует солнечный свет, отраженный с большой поверхности, на меньшую поверхность абсорбера, благодаря чему достигается высокая температура. В некоторых моделях солнечное излучение концентрируется в фокусной точке, тогда как в других лучи солнца концентрируются вдоль тонкой фокальной линии. Приемник расположен в фокусной точке или вдоль фокальной линии. Жидкость-теплоноситель проходит через приемник и поглощает тепло. Такие коллекторы-концентраторы наиболее пригодны для регионов с высокой инсоляцией - близко к экватору и в пустынных районах.

Существуют и другие недорогие технологически несложные солнечные коллекторы узкого назначения - солнечные печи (для приготовления еды) и солнечные дистилляторы, которые позволяют дешево получить дистиллированную воду практически из любого источника.

Солнечные печи

Они дешевы и просты в изготовлении. Они состоят из просторной хорошо теплоизолированной коробки, выстеленной отражающим свет материалом (например, фольгой), накрытой стеклом и оборудованной внешним отражателем. Кастрюля черного цвета служит поглотителем, нагреваясь быстрее, чем обычная посуда из алюминия или нержавеющей стали. Солнечные печи можно использовать для обеззараживания воды, если доводить ее до кипения.

Бывают ящичные и зеркальные (с отражателем) солнечные печи.

Солнечные дистилляторы

Солнечные дистилляторы обеспечивают дешевую дистиллированную воду, причем источником может служить даже соленая или сильно загрязненная вода. В их основе лежит принцип испарения воды из открытого контейнера. Солнечный дистиллятор использует энергию Солнца для ускорения этого процесса. Состоит он из теплоизолированного контейнера темного цвета с остеклением, которое наклонено с таким расчетом, чтобы конденсирующаяся пресная вода стекала в специальную емкость. Небольшой солнечный дистиллятор - размером с кухонную плиту - в солнечный день может вырабатывать до десяти литров дистиллированной воды.

3.2.2 Солнечные системы

Солнечные системы горячего водоснабжения

Горячее водоснабжение - наиболее распространенный вид прямого применения солнечной энергии. Типичная установка состоит из одного или более коллекторов, в которых жидкость нагревается на солнце, а также бака для хранения горячей воды, нагретой посредством жидкости-теплоносителя. Даже в регионах с относительно небольшим количеством солнечной радиации, например в Северной Европе, солнечная система может обеспечить 50-70% потребности в горячей воде. Больше получить невозможно, разве что с помощью сезонного регулирования. В Южной Европе солнечный коллектор может обеспечить 70-90% потребляемой горячей воды. Нагрев воды с помощью энергии Солнца - очень практичный и экономный способ. В то время, как фотоэлектрические системы достигают эффективности 10-15%, тепловые солнечные системы показывают КПД 50-90%. В сочетании с деревосжигающими печами бытовую потребность в горячей воде можно удовлетворять практически круглый год без применения ископаемых видов топлива.

Термосифонные солнечные системы

Термосифонными называются солнечные водонагревательные системы с естественной циркуляцией (конвекцией) теплоносителя, которые используются в условиях теплой зимы (при отсутствии морозов). В целом это не самые эффективные из солнечных энергосистем, но они имеют много преимуществ с точки зрения строительства жилья. Термосифонная циркуляция теплоносителя происходит благодаря изменению плотности воды с изменением ее температуры. Термосифонная система делится на три основные части:

· плоский коллектор (абсорбер);

· трубопроводы;

· Бак-накопитель для горячей воды (бойлер).

Когда вода в коллекторе (обычно в плоском) нагревается, она поднимается по стояку и поступает в бак-накопитель; на ее место в коллектор со дна бака-накопителя поступает холодная вода. Поэтому необходимо располагать коллектор ниже бака-накопителя и утеплять соединительные трубы.

Такие установки популярны в субтропических и тропических областях.

Солнечные системы подогрева воды

Чаще всего используются для обогрева бассейнов. Несмотря на то, что стоимость такой установки меняется в зависимости от размера бассейна и других специфических условий, если солнечные системы устанавливаются с целью снижения или отказа от потребления топлива или электроэнергии, они за два-четыре года окупаются за счет экономии энергии. Более того, обогрев бассейна позволяет на несколько недель продлить купальный сезон без дополнительных затрат.

В большинстве зданий не составляет труда устроить солнечный обогреватель для бассейна. Он может сводиться к простому черному шлангу, по которому в бассейн подается вода. Для открытых бассейнов нужно всего лишь установить абсорбер. Закрытые бассейны требуют установки стандартных коллекторов, чтобы обеспечить теплую воду и зимой.

Сезонное аккумулирование тепла

Есть и такие установки, которые позволяют зимой использовать тепло, накопленное летом солнечными коллекторами и сохраненное при помощи больших аккумулирующих баков (сезонное аккумулирование). Здесь проблема заключается в том, что количество жидкости, необходимое для обогрева дома, сопоставимо с объемом самого дома. Вдобавок, хранилище тепла необходимо очень хорошо изолировать. Чтобы обычный домашний бак-накопитель сохранил большую часть тепла в течение полугода, его пришлось бы обернуть в слой изоляции толщиной 4 метра. Поэтому выгодно делать объем накопительной емкости очень большим. Из-за этого снижается отношение площади поверхности к объему.

Крупные солнечные установки центрального отопления используются в Дании, Швеции, Швейцарии, Франции и США. Солнечные модули устанавливают прямо на земле. Без хранилища такая солнечная отопительная установка может покрыть около 5% годовой потребности в тепле, так как установка не должна вырабатывать больше, чем минимальное количество потребляемого тепла, включая потери в районной системе отопления (до 20% при передаче). Если есть хранение дневного тепла в ночное время, то солнечная отопительная установка может покрывать 10-12% потребности в тепле, включая потери при передаче, а с сезонным хранением тепла - до 100%. Существует также возможность комбинирования районного отопления с индивидуальными солнечными коллекторами. Районную систему отопления можно отключить на лето, когда горячее водоснабжение обеспечивается Солнцем, и нет потребности в отоплении.

Солнечная энергия в сочетании с другими возобновляемыми источниками.

Хороший результат приносит комбинирование различных возобновляемых источников энергии, например, тепло Солнца в сочетании с сезонным аккумулированием тепла в виде биомассы. Либо, если оставшаяся потребность в энергии очень низка, можно использовать жидкие или газообразные виды биотоплива в сочетании с эффективными котлами в дополнение к солнечному отоплению.

Интересную комбинацию представляют собой солнечное отопление и котлы, работающие на твердой биомассе. Этим же решается и проблема сезонного хранения солнечной энергии. Использование биомассы летом не является оптимальным решением, так как КПД котлов при частичной загрузке невысок, к тому же относительно высоки потери в трубах - а в небольших системах сжигание древесины летом может причинять неудобство. В таких случаях все 100% тепловой нагрузки летом может обеспечиваться за счет солнечного отопления. Зимой, когда количество солнечной энергии незначительно, практически все тепло вырабатывается за счет сжигания биомассы.

В Центральной Европе накоплен большой опыт комбинирования солнечного отопления и сжигания биомассы для производства тепла. Обычно около 20-30% общей тепловой нагрузки покрывает солнечная система, а главная нагрузка (70-80%) обеспечивается биомассой. Это сочетание может применяться и в индивидуальных жилых домах, и в системах центрального (районного) отопления. В условиях Центральной Европы около 10 м 3 биомассы (например, дров) достаточно для отопления частного дома, причем солнечная установка помогает сэкономить до 3 м 3 дров в год.

3.2.3 Солнечные тепловые электростанции

В дополнение к прямому использованию солнечного тепла, в регионах с высоким уровнем солнечной радиации ее можно использовать для получения пара, который вращает турбину и вырабатывает электроэнергию. Производство солнечной тепловой электроэнергии в крупных масштабах достаточно конкурентоспособно. Промышленное применение этой технологии берет свое начало в 1980-х; с тех пор эта отрасль быстро развивалась. В настоящее время энергокомпаниями США уже установлено более 400 мегаватт солнечных тепловых электростанций, которые обеспечивают электричеством 350 000 человек и замещают эквивалент 2,3 млн. баррелей нефти в год. Девять электростанций, расположенных в пустыне Мохаве (в американском штате Калифорния) имеют 354 МВт установленной мощности и накопили 100 лет опыта промышленной эксплуатации. Эта технология является настолько развитой, что, по официальным сведениям, может соперничать с традиционными электрогенерирующими технологиями во многих районах США. В других регионах мира также скоро должны быть начаты проекты по использованию солнечного тепла для выработки электроэнергии. Индия, Египет, Марокко и Мексика разрабатывают соответствующие программы, гранты для их финансирования предоставляет Глобальная программа защиты окружающей среды (GEF). В Греции, Испании и США новые проекты разрабатываются независимыми производителями электроэнергии.

По способу производства тепла солнечные тепловые электростанции подразделяют на солнечные концентраторы (зеркала) и солнечные пруды.

Солнечные концентраторы

Такие электростанции концентрируют солнечную энергию при помощи линз и рефлекторов. Так как это тепло можно хранить, такие станции могут вырабатывать электричество по мере надобности, днем и ночью, в любую погоду.

Большие зеркала - с точечным либо линейным фокусом - концентрируют солнечные лучи до такой степени, что вода превращается в пар, выделяя при этом достаточно энергии для того, чтобы вращать турбину. Фирма "Luz Corp." установила огромные поля таких зеркал в калифорнийской пустыне. Они производят 354 МВт электроэнергии. Эти системы могут превращать солнечную энергию в электричество с КПД около 15 %.

Существуют следующие виды солнечных концентраторов:

1. Солнечные параболические концентраторы

2. Солнечная установка тарельчатого типа

3. Солнечные электростанции башенного типа с центральным приемником.

Солнечные пруды

Ни фокусирующие зеркала, ни солнечные фотоэлементы не могут вырабатывать энергию в ночное время. Для этой цели солнечную энергию, накопленную днем, нужно сохранять в теплоаккумулирующих баках. Этот процесс естественным образом происходит в так называемых солнечных прудах.

Солнечные пруды имеют высокую концентрацию соли в придонных слоях воды, неконвективный средний слой воды, в котором концентрация соли возрастает с глубиной и конвекционный слой с низкой концентрацией соли - на поверхности. Солнечный свет падает на поверхность пруда, и тепло удерживается в нижних слоях воды благодаря высокой концентрации соли. Вода высокой солености, нагретая поглощенной дном пруда солнечной энергией, не может подняться из-за своей высокой плотности. Она остается у дна пруда, постепенно нагреваясь, пока почти не закипает (в то время как верхние слои воды остаются относительно холодными). Горячий придонный "рассол" используется днем или ночью в качестве источника тепла, благодаря которому особая турбина с органическим теплоносителем может вырабатывать электричество. Средний слой солнечного пруда выступает в качестве теплоизоляции, препятствуя конвекции и потерям тепла со дна на поверхность. Разница температур на дне и на поверхности воды пруда достаточна для того, чтобы привести в действие генератор. Теплоноситель, пропущенный по трубам через нижний слой воды, подается далее в замкнутую систему Рэнкина, в которой вращается турбина для производства электричества.

3.3 Фотоэлектрические системы

Устройства для прямого преобразования световой или солнечной энергии в электроэнергию называются фотоэлементами (по-английски Photovoltaics, от греческого photos - свет и названия единицы электродвижущей силы - вольт). Преобразование солнечного света в электричество происходит в фотоэлементах, изготовленных из полупроводникового материала, например, кремния, которые под воздействием солнечного света вырабатывают электрический ток. Соединяя фотоэлементы в модули, а те, в свою очередь, друг с другом, можно строить крупные фотоэлектрические станции. Крупнейшая такая станция на сегодняшний день - это 5-мегаваттная установка Карриса Плейн в американском штате Калифорния. КПД фотоэлектрических установок в настоящее время составляет около 10%, однако отдельные фотоэлементы могут достигать эффективности 20% и более.

Солнечные фотоэлектрические системы просты в обращении и не имеют движущихся механизмов, однако сами фотоэлементы содержат сложные полупроводниковые устройства, аналогичные используемым для производства интегральных схем. В основе действия фотоэлементов лежит физический принцип, при котором электрический ток возникает под воздействием света между двумя полупроводниками с различными электрическими свойствами, находящимися в контакте друг с другом. Совокупность таких элементов образует фотоэлектрическую панель, либо модуль. Фотоэлектрические модули, благодаря своим электрическим свойствам, вырабатывают постоянный, а не переменный ток. Он используется во многих простых устройствах, питающихся от батарей. Переменный же ток, напротив, меняет свое направление через регулярные промежутки времени. Именно этот тип электричества поставляют энергопроизводители, он используется для большинства современных приборов и электронных устройств. В простейших системах постоянный ток фотоэлектрических модулей используется напрямую. Там же, где нужен переменный ток, к системе необходимо добавить инвертор, который преобразует постоянный ток в переменный.

В ближайшие десятилетия значительная часть мирового населения познакомится с фотоэлектрическими системами. Благодаря им исчезнет традиционная необходимость сооружения крупных дорогостоящих электростанций и распределительных систем. По мере того, как стоимость фотоэлементов будет снижаться, а технология - совершенствоваться, откроется несколько потенциально огромных рынков фотоэлементов. К примеру, фотоэлементы, встроенные в стройматериалы, будут осуществлять вентиляцию и освещение домов. Потребительские товары - от ручного инструмента до автомобилей - выиграют в качестве от использования компонентов, содержащих фотоэлектрические компоненты. Коммунальные предприятия также смогут находить все новые способы применения фотоэлементов для удовлетворения потребностей населения.

К простейшим фотоэлектрическим системам относятся:

· солнечные насосы - фотоэлектрические насосные установки являются долгожданной альтернативой дизельным генераторам и ручным насосам. Они качают воду именно тогда, когда она особенно нужна - в ясный солнечный день. Солнечные насосы просто устанавливать и эксплуатировать. Небольшой насос может установить один человек за пару часов, причем ни опыт, ни специальное оборудование для этого не нужны.

· Фотоэлектрические системы с аккумулятором - аккумулятор заряжается от солнечного генератора, запасает энергию и делает ее доступной в любое время. Даже в самых неблагоприятных условиях и в отдаленных пунктах фотоэлектрическая энергия, сохраняемая в аккумуляторах, может питать необходимое оборудование. Благодаря аккумулированию электроэнергии фотоэлектрические системы служат надежным источником электропитания днем и ночью, в любую погоду. Фотоэлектрические системы, оснащенные аккумулятором, во всем мире питают осветительные приборы, сенсоры, звукозаписывающее оборудование, бытовые приборы, телефоны, телевизоры и электроинструменты.

· фотоэлектрические системы с генераторами - когда электричество нужно непрерывно или возникают периоды, когда его нужно больше, чем может выработать одна только фотобатарея, ее может эффективно дополнить генератор. В дневные часы фотоэлектрические модули удовлетворяют дневную потребность в энергии и заряжают аккумулятор. Когда аккумулятор разряжается, двигатель-генератор включается и работает до тех пор, пока батареи не подзарядятся. В некоторых системах генератор восполняет недостаток энергии, когда потребление электричества превышает общую мощность аккумуляторов. Двигатель-генератор вырабатывает электричество в любое время суток. Таким образом, он представляет собой прекрасный резервный источник питания для дублирования ночью или в ненастный день фотоэлектрических модулей, зависящих от прихотей погоды. С другой стороны, фотоэлектрический модуль работает бесшумно, не требует ухода и не выбрасывает в атмосферу загрязняющие вещества. Комбинированное использование фотоэлементов и генераторов способно снизить первоначальную стоимость системы. Если резервной установки нет, фотоэлектрические модули и аккумуляторы должны быть достаточно большими, чтобы обеспечивать питание ночью.

· фотоэлектрические системы, присоединённые к сети - в условиях централизованного энергоснабжения, подключенная к сети фотоэлектрическая система может обеспечивать часть необходимой нагрузки, другая часть при этом поступает из сети. В этом случае аккумулятор не используется. Тысячи домовладельцев в разных странах мира используют такие системы. Энергия фотоэлементов либо используется на месте, либо подается в сеть. Когда же владельцу системы нужно больше электричества, чем она вырабатывает - например, вечером, то возросшая потребность автоматически удовлетворяется за счет сети. Когда же система вырабатывает больше электричества, чем может потребить хозяйство, излишек отправляется (продается) в сеть. Таким образом, коммунальная сеть выступает в роли резерва для фотоэлектрической системы, как аккумулятор - для автономной установки.

· промышленные фотоэлектрические установки - фотоэлектрические станции работают бесшумно, не потребляют ископаемого топлива и не загрязняют воздух и воду. К сожалению, фотоэлектрические станции пока еще не очень динамично входят в арсенал коммунальных сетей, что можно объяснить их особенностями. При современном методе подсчета стоимости энергии, солнечное электричество все еще значительно дороже, чем продукция традиционных электростанций. К тому же фотоэлектрические системы вырабатывают энергию только в светлое время суток, и их производительность зависит от погоды.

4. Солнечная архитектура

Существует несколько основных способов пассивного использования солнечной энергии в архитектуре. Используя их, можно создать множество различных схем, тем самым получая разнообразные проекты зданий. Приоритетами при постройке здания с пассивным использованием солнечной энергии являются: удачное расположение дома; большое количество окон, обращенных к югу (в Северном полушарии), чтобы пропускать больше солнечного света в зимнее время (и наоборот, небольшое количество окон, обращенных на восток или запад, чтобы ограничить поступление нежелательного солнечного света в летнее время); правильный расчет тепловой нагрузки на внутренние помещения, чтобы избежать нежелательных колебаний температуры и сохранять тепло в ночное время, хорошо изолированная конструкция здания.

Расположение, изоляция, ориентация окон и тепловая нагрузка на помещения должны представлять собой единую систему. Для уменьшения колебаний внутренней температуры изоляция должна быть помещена с внешней стороны здания. Однако в местах с быстрым внутренним обогревом, где требуется немного изоляции, или с низкой теплоемкостью, изоляция должна быть с внутренней стороны. Тогда дизайн здания будет оптимальным при любом микроклимате. Стоит отметить и тот факт, что правильный баланс между тепловой нагрузкой на помещения и изоляцией ведет не только к сбережению энергии, но также и к экономии строительных материалов. Пассивные солнечные здания - идеальное место для жизни. Здесь полнее ощущается связь с природой, в таком доме много естественного света, в нем экономится электроэнергия.

Пассивное использование солнечного света обеспечивает примерно 15% потребности обогрева помещений в стандартном здании и является важным источником энергосбережения. При проектировании здания необходимо учитывать принципы пассивного солнечного строительства для максимального использования солнечной энергии. Эти принципы можно применять везде и практически без дополнительных затрат.

Во время проектирования здания также следует учитывать применение активных солнечных систем, таких как солнечные коллекторы и фотоэлектрические батареи. Это оборудование устанавливается на южной стороне здания. Чтобы максимизировать количество тепла в зимнее время, солнечные коллекторы в Европе и Северной Америке должны устанавливаться с углом наклона более 50° от горизонтальной плоскости. Неподвижные фотоэлектрические батареи получают в течение года наибольшее количество солнечной радиации, когда угол наклона относительно уровня горизонта равняется географической широте, на которой расположено здание. Угол наклона крыши здания и его ориентация на юг являются важными аспектами при разработке проекта здания. Солнечные коллекторы для горячего водоснабжения и фотоэлектрические батареи должны быть расположены в непосредственной близости от места потребления энергии. Важно помнить, что близкое расположение ванной комнаты и кухни позволяет сэкономить на установке активных солнечных систем (в этом случае можно использовать один солнечный коллектор на два помещения) и минимизировать потери энергии на транспортировку. Главным критерием при выборе оборудования является его эффективность.

Заключение

В настоящее время используется лишь ничтожная часть солнечной энергии из-за того, что существующие солнечные батареи имеют сравнительно низкий коэффициент полезного действия и очень дороги в производстве. Однако не следует сразу отказываться от практически неистощимого источника чистой энергии: по утверждениям специалистов, гелиоэнергетика могла бы одна покрыть все мыслимые потребности человечества в энергии на тысячи лет вперед. Возможно, также повысить КПД гелиоустановок в несколько раз, а разместив их на крышах домов и рядом с ними, мы обеспечим обогрев жилья, подогрев воды и работу бытовых электроприборов даже в умеренных широтах, не говоря уже о тропиках. Для нужд промышленности, требующих больших затрат энергии, можно использовать километровые пустыри и пустыни, сплошь уставленные мощными гелиоустановками. Но перед гелиоэнергетикой встает множество трудностей с сооружением, размещением и эксплуатацией гелиоэнергоустановок на тысячах квадратных километров земной поверхности. Поэтому общий удельный вес гелиоэнергетики был и останется довольно скромным, по крайней мере, в обозримом будущем.

В настоящее время разрабатываются новые космические проекты, имеющие целью исследование Солнца, проводятся наблюдения, в которых принимают участие десятки стран. Данные о процессах, происходящих на Солнце, получают с помощью аппаратуры, установленной на искусственных спутниках Земли и космических ракетах, на горных вершина и в глубинах океанов.

Большое внимание нужно уделить и тому, что производство энергии, являющееся необходимым средством для существования и развития человечества, оказывает воздействие на природу и окружающую человека среду. С одной стороны в быт и производственную деятельность человека настолько твердо вошла тепло- и электроэнергия, что человек даже и не мыслит своего существования без нее и потребляет само собой разумеющиеся неисчерпаемые ресурсы. С другой стороны, человек все больше и больше свое внимание заостряет на экономическом аспекте энергетики и требует экологически чистых энергетических производств. Это говорит о необходимости решения комплекса вопросов, среди которых перераспределение средств на покрытие нужд человечества, практическое использование в народном хозяйстве достижений, поиск и разработка новых альтернативных технологий для выработки тепла и электроэнергии и т.д.

Сейчас учёные исследуют природу Солнца, выясняют его влияние на Землю, работают над проблемой применения практически неиссякаемой солнечной энергии.


Список использованных источников

Литература

1. Поиски жизни в Солнечной системе: Перевод с английского. М.: Мир, 1988 г., с. 44-57

2. Жуков Г.Ф. Общая теория энергии.//М: 1995., с. 11-25

3. Дементьев Б.А. Ядерные энергетические реакторы. М., 1984, с. 106-111

4. Тепловые и атомные электрические станции. Справочник. Кн. 3. М., 1985, с. 69-93

5. Энциклопедический словарь юного астронома, М.:Педагогика,1980 г., с. 11-23

6. Видяпин В.И., Журавлева Г.П. Физика. Общая теория.//М: 2005,с. 166-174

7. Дагаев М. М. Астрофизика.//М:1987,с. 55-61

8. Тимошкин С. Е. Солнечная энергетика и солнечные батареи. М., 1966, с. 163-194

9. Илларионов А. Г. Природа энергетики.//М: 1975., с. 98-105

Web-sites

1. http://www.stroyca.ru

2. http://www.astro.alfaspace.net

3. http://www. solbat.narod.ru/1.htm

4. http://www. sunenergy.4hs.ru

5. http://solar-battery.narod.ru

Без энергии невозможна жизнь на планете. Физический закон сохранения энергии говорит о том, энергия не может возникнуть из ничего и не исчезает бесследно. Она может быть получена из природных ресурсов, таких как уголь, природный газ или уран, и превращена в удобные для нас формы, например, в тепло или свет. В окружающем нас мире можем находить различные формы накопления энергии, но важнейшим для человека является энергия, которую дают солнечные лучи- солнечная энергия.

Солнечная энергия относится к восстанавливаемым источникам энергии, то есть восстанавливается без участия человека, естественным путем. Это один из экологически безопасных энергетических источников, который не загрязняет окружающую среду. Возможности применения солнечной энергии практически неограниченны и ученые всего мира работают над разработкой систем, которые расширяют возможности использования солнечной энергии .

Один квадратный метр Солнца излучает 62 900 кВт энергии. Это примерно соответствует мощности работы 1 миллиона электрических ламп. Впечатляет такая цифра — Солнце дает Земле ежесекундно 80 тысяч миллиардов кВт, т.е в несколько раз больше, чем все электростанции мира. Перед современной наукой стоит задача — научиться наиболее полно и эффективно использовать энергию Солнца, как наиболее безопасную. Ученые считают, что повсеместное использование солнечной энергии — это будущее человечества.

Мировые запасы открытых месторождений угля и газа, при таких темпах их использования, как сегодня, должны истощиться в ближайшие 100 лет. Подсчитано, что в еще не разведанных месторождениях запасов горючих ископаемых хватило бы на 2-3 столетия. Но при этом наши потомки были бы лишены этих энергоносителей, а продукты их сгорания нанесли бы колоссальный ущерб окружающей среде.

Огромный потенциал имеет атомная энергия. Однако, Чернобыльская авария в апреле 1986 года показала, какие серьезные последствия может повлечь использование ядерной энергии. Общественность всего мира признала, что использование атомной энергии в мирных целях экономически оправдано, но следует соблюдать строжайшие меры безопасности при ее использовании.

Следовательно, наиболее чистый, безопасный источник энергии — Солнце!

Солнечная энергия может быть преобразована в полезную энергию посредством использования активных и пассивных солнечных энергетических систем.

Пассивные системы использования солнечной энергии.

Самый примитивный способ пассивного использования солнечной энергии — это окрашенная в темный цвет емкость для воды. Темный цвет, аккумулируя солнечную энергию , превращает ее в тепловую — вода нагревается.

Однако, есть более прогрессивные методы пассивного использования солнечной энергии . Разработаны строительные технологии, которые при проектировании зданий, учета климатических условий, подбора строительных материалов максимально используют солнечную энергию для обогрева или охлаждения, освещения зданий. При таком проектировании сама конструкция здания является коллектором, аккумулирующей солнечную энергию .

Так, в 100г н.э Плиний Младший построил небольшой дом на севере Италии. В одной из комнат окна сделаны из слюды. Оказалось, что эта комната теплее других и на ее обогрев требовалось меньше дров. В этом случае слюда являлась как изолятор, задерживающий тепло.

Современные строительные конструкции учитывают географическое положение зданий. Так, большое количество окон, выходящие на южную сторону, предусматривают в северных регионах, чтобы поступало больше солнечного света и тепла, и ограничивают количество окон с восточной и западной стороны, чтобы ограничить поступление солнечного света летом. В таких зданиях ориентация окон и расположение, тепловая нагрузка и теплоизоляция — единая конструкторская система при проектировании.

Такие здания экологически чистые, энергетически независимые и комфортные. В помещениях много естественного света, более полно ощущается связь с природой, к тому же существенно экономится электроэнергия. Тепло в таких зданиях сохраняется благодаря подобранным теплоизоляционным материалам стен, потолков, полов. Такие первое «солнечные» здания приобрели огромную популярность в Америке после Второй мировой войны. Впоследствии, из-за снижения цен на нефть, интерес к проектировке таких зданий несколько угас. Однако, сейчас, в связи с глобальным экологическим кризисом, наблюдается рост внимания к экологическим проектам с возобновляющимся энергетическим системам возросла вновь.

Активные системы использования солнечной энергии

В основе активных систем использования солнечной энергии применяются солнечные коллекторы. Коллектор, поглощая солнечную энергию , преобразует ее в тепло, которое через теплоноситель обогревает здания, нагревает воду, может преобразовать его в электрическую энергию и т.д. Солнечные коллекторы могут применятся во всех процессах в промышленности, сельском хозяйстве, бытовых нуждах, где используется тепло.

Виды коллекторов

воздушный солнечный коллектор

Это простейший вид солнечных коллекторов. Его конструкция предельно проста и напоминает эффект обычной теплицы, которая есть на любом дачном участке. Проведите небольшой эксперимент. В зимний солнечный день положите на подоконник любой предмет так, чтобы на него падали солнечные лучи и через некоторое время положите на него ладонь. Вы почувствуете, что этот предмет стал теплым. А за окном может быть — 20! Вот на этом принципе и основана работа солнечного воздушного коллектора.

Основной элемент коллектора — теплоизолированная пластина, сделанная из любого материала, который хорошо проводит тепло. Пластина окрашена в темный цвет. Солнечные лучи проходят через прозрачную поверхность, нагревают пластину, а потом потоком воздуха передают тепло в помещение. Воздух проходит благодаря естественной конвенции или при помощи вентилятора, что улучшает теплопередачу.

Однако, недостаток работы этой системы в том, что требуются дополнительные расходы на работу вентилятора. Эти коллекторы работают в течении светового дня, поэтому не могут заменить основной источник отопления. Однако, если вмонтировать коллектор в основной источник отопления или вентиляции, его КПД несоизмеримо возрастает. Солнечные воздушные коллекторы могут использоваться и для опреснения морской воды, что снижает ее себестоимость до 40 евроцентов за куб м.

Солнечные коллекторы могут быть плоскими и вакуумными.

плоский солнечный коллектор

Коллектор состоит из элемента, поглощающего солнечную энергию, покрытия (стекло с пониженным содержанием металла) , трубопровода и термоизолирующего слоя. Прозрачное покрытие защищает корпус от неблагоприятных климатических условий. Внутри корпуса панель поглотителя солнечной энергии (абсорбера) соединена с теплоносителем, который циркулирует по трубам. Трубопровод может быть как в виде решетки, так и в виде серпантина. Теплоноситель движется по ним от входных до выходных патрубков, постепенно нагреваясь. Панель поглотителя изготавливается из металла, хорошо проводящему тепло (алюминий, медь).

Коллектор улавливает тепло, превращая его в тепловую энергию. Такие коллекторы можно вмонтировать в крышу или расположить на крыше здания, а можно расположить их отдельно. Это придаст дизайну участка современный вид.

Вакуумный солнечный коллектор

Вакуумные коллекторы могут использоваться круглый год. Основным элементом коллекторов являются вакуумные трубки. Каждая из них состоит из двух стеклянных труб. Трубы изготавливают из боросиликатного стекла, причем внутренняя покрыта специальным покрытием, которое обеспечивает поглощение тепла с минимальным отражением. Из пространства между трубками выкачан воздух,. Для поддержания вакуума используется бариевый газопоглотитель. В исправном состоянии вакуумная трубка имеет серебристый цвет. Если она выглядит белой, то это значит, что вакуум исчез и трубку надо заменить.

Вакуумный коллектор состоит из комплекса вакуумных трубок (10-30) и осуществляет передачу тепла в накопительный резервуар через незамерзающую жидкость (теплоноситель). КПД вакуумных коллекторов высок:

— при облачной погоде, т.к. вакуумные трубки могут поглощать энергию инфракрасных лучей, которые проходят через облака

— могут работать при минусовых температурах.

Солнечные батареи.

Солнечная батарея — это набор модулей, воспринимающих и преобразующих солнечную энергию, в том числе и тепловых. Но этот термин традиционно закрепился за фитоэлектрическими преобразователями. Поэтому, говоря «солнечная батарея» подразумеваем фитоэлектрическое устройство, преобразующее солнечную энергию в электрическую.

Солнечные батареи способны генерировать электрическую энергию постоянно или аккумулировать ее для дальнейшего использования. Впервые фотоэлектрические батареи были применены в на космических спутниках.

Достоинство солнечных батарей — максимальная простота конструкции, простой монтаж, минимальные требования к облуживанию, большой срок эксплуатации. При установке не требуют дополнительного места. Единственное условие — не затенять их в течении длительного времени и удалять пыль с рабочей поверхности. Современные солнечные батареи способны сохранять работоспособность в течении десятилетий! Трудно найти систему настолько безопасную, эффективную и с таким длительным сроком действия! Они вырабатывают энергию в течении всего светового дня, даже в пасмурную погоду.

Солнечные батареи имеют свои недостатки в применении:

— чувствительность к загрязнениям. (Если расположить батарею под углом 45 градусов, то она будет очищена дождями или снегом, тем самым не потребуется дополнительного обслуживания)

— чувствительность к высокой температуре. (Да, при нагреве до 100 — 125 градусов солнечная батарея может даже отключиться и может потребоваться система охлаждения. Вентиляционная систстема при этом затратит малую долю вырабатываемой батареей энергии. В современных конструкциях солнечных батарей предусмотрена система оттока горячего воздуха.)

— высокая цена. (Принимая во внимание длительный срок службы солнечных батарей, то она не только окупит затраты на ее приобретение, но и сэкономит средства при потреблении электроэнергии, сэкономит тонны традиционных видов топлива при том экологически безопасна)

Использование солнечных энергетических систем в строительстве.

В современной архитектуре все чаще планируют строить дома с встроенными аккумуляторными источниками солнечной энергии. Солнечные батареи устанавливают на крышах зданий или на специальных опорах. Эти здания используют тихий, надежный и безопасный источник энергии — Солнце. Солнечная энергия используется для освещения, отопления помещений, охлаждения воздуха, вентиляции, производства электроэнергии.

Представляем несколько инновационных архитектурных проектов с использованием солнечных систем.

Фасад этого здания сконструирован из стекла, железа, алюминия с встроенными аккумуляторами солнечной энергии. Производимой энергии достаточно, чтобы не только обеспечить жителей дома автономным горячим водоснабжением и электричеством, но и освещать улицу 2,5 км в течении года.

Этот дом спроектировала группа американских студентов. Проект был представлен на конкурс «Проектирование, строительство домов и эксплуатация солнечных батарей». Условия конкурса: представить архитектурный проект жилого дома при его экономической эффективности, энергосбережении и привлекательности. Авторы проекта доказали, что их проект доступен, привлекателен для потребителя, сочетает превосходный дизайн и максимальную эффективность. (перевод с сайта www.solardecathlon.gov)

Использование систем солнечной энергии в мире.

Системы использования солнечной энергии совершенны и экологически безопасны. Во всем мире на них огромный спрос. Во всем мире люди начинают отказываются от использования традиционных видов топлива из-за роста цен на газ и нефть. Так, в Германии в 2004г. 47% домов имели солнечные коллекторы для нагрева воды.

Во многих странах мира разработаны государственные программы развития использования солнечной энергии . В Германии это программа «100 000 солнечных крыш», в США аналогичная программа «Миллион солнечных крыш». В 1996г. архитекторы Германии, Австрии, Великобритании, Греции и др. стран разработали Европейскую хартию о солнечной энергии в строительстве и архитектуре. В Азии лидирует Китай, где на основе современных технологий внедряются системы солнечных коллекторов в строительство зданий и использование солнечной энергии в промышленности.

Факт, который говорит о многом: одним из условий вступления в Евросоюз является рост доли альтернативных источников в энергосистеме страны. В 2000г. в мире работало 60 млн кв км солнечных коллекторов, к 2010г из площадь возросла до 300 млн кв км.

Эксперты отмечают, рынок систем солнечной энергии на территории России, Украины и Белоруссии только формируется. Солнечные системы никогда не производились в больших масштабах, потому что сырьевые ресурсы были настолько дешевы, что дорогостоящее оборудование гелиосистем было не востребовано… Выпуск коллекторов, в России, например, почти полностью прекращен.

В связи с подорожанием традиционных энергоносителей, наметилось оживление интереса с применению солнечных систем. В ряде регионов этих стран, испытывающих дефицит энергоресурсов, принимаются локальные программы по использованию гелиосистем, но широкому потребительскому рынку солнечные системы практически не знакомы.

Главная причина медленного развития рынка продажи и использования солнечных систем является, во-первых, их высокая начальная стоимость, во-вторых, недостаток информации о возможностях солнечных систем, передовых технологиях их использования, о разработчиках и изготовителях гелиосистем. Все это не может дать возможности правильно оценить эффективность применения систем, работающих на солнечной энергии .

Надо иметь в виду, что солнечный коллектор — не конечная продукция. Для получения конечной продукции — тепла, электроэнергии, горячей воды — надо пройти путь от проектирования, монтажа до пуска гелиосистем. Небольшой имеющийся опыт использования солнечных коллекторов показывает, что эта работа не сложнее монтажа традиционного отопления, но экономическая эффективность значительно выше.

В Белоруссии, России, на Украине есть множество фирм, занимающиеся проектировкой и монтажом оборудования отопления, но приоритет имеют сегодня традиционные энергоносители. Развитие экономических процессов, мировой опыт использования систем солнечной энергии показывает, что будущее за альтернативными источниками энергии. На ближайшее будущее можно отметить, что гелиосистемы являются новой, практически не занятой позицией нашего рынка.

Солнечная энергия - это свет, тепло и жизнь на нашей планете, а еще солнечная энергия - главный альтернативный источник, который на несколько порядков превышает весь существующий энергетический потенциал Земли, и он в состоянии полностью обеспечить все ее энергетические потребности.

Как Солнце является нескончаемым источником тепла и света (условно), так и энергия солнечного излучения поддерживает жизнь на Земле уже не один миллион лет. Возможность обеспечивать все жизненно важные процессы Солнце имеет благодаря своему составу. В процентном соотношении оно преимущественно состоит из двух элементов: водорода (73%) и гелия (25%). Более подробно об образовании и жизненном цикле Солнца можно прочитать, например, в википедии.

Реакции термоядерного синтеза, которые происходят на Солнце сжигают водород, превращая его в гелий. Колоссальная энергия солнечных лучей, выделяющаяся во время таких процессов, излучается в космос. Кстати, ученые, пытаются повторить эти реакции на земле (реакция управляемого термоядерного синтеза, международный проект ТОКАМАК) .

Все организмы, использующие энергию солнечного света, обеспечивают с ее помощью свои процессы жизнедеятельности - солнечный свет необходим для начальной стадии процесса фотосинтеза. С ее участием происходит синтез таких веществ, как кислород и углеводороды.

Количество водорода на Солнце постепенно уменьшается и рано или поздно придет время, когда его запас на солнце будет исчерпан. Однако, в силу большого количества водорода этого не произойдет, по крайней мере, в ближайшие 5 миллиардов лет.

Каждую секунду в ядре Солнца около 4 миллионов тонн вещества преобразуются в лучистую энергию, в результате чего генерируется солнечное излучение и поток солнечных нейтрино.

Основной приток энергии Солнца, который доходит до атмосферы Земли находится в спектральном диапазоне 0,1 4 мкм. В диапазоне 0,3 1,5-2 мкм атмосфера Земли почти прозрачна для солнечного излучения. Ультрафиолетовые волны (длина волны короче 0,3 мкм) поглощаются слоем озона, который находится на высотах 20-60 км. Рентгеновское и гамма-излучение до поверхности Земли почти не доходят.

Концентрация солнечной энергии характеризируется величиной 1367 Вт/м 2 , именуемой солнечной постоянной. Именно такой поток проходит через перпендикулярную площадку размером в 1 м 2 , если ее поместить на входе в верхний слой атмосферы Земли. При достижении этим потоком уровня моря, потери энергии уменьшают его до 1000 Вт/м 2 на экваторе. Но смена дня и ночи снижает его еще в 3 раза. Для умеренных широт, с учетом зимнего периода он составляет половину от количественного показателя максимального потока на экваторе.

Усреднённый по времени и по поверхности Земли, этот поток составляет 341 Вт/м 2 . В расчете на полную поверхность, или 1,74х10 17 Вт в расчёте на полную поверхность Земли. Таким образом, в сутки Земля на поверхности получит 4,176х10 15 кВтч энергии, большая часть которой, возвращается в космос в виде излучения.

По данным МЭА на 2015 год, мировое производство энергии составило 19099 Mtoe (эквивалент мегатонны нефти). В пересчёте на привычные киловаттчасы, эта цифра составит 6,07х10 11 кВтч в сутки.

Солнце дает земле энергии в 8 000 раз больше, чем необходимо всему человечеству. Очевидно, что перспективы применения данного вида энергии очень широки. С ее участием развивается ветро-энергетика (ветер возникает из-за разности температур), применяются фотоэлектрические преобразователи и строятся гидроаккумулирующие станции. Имеет место широкое использование солнечных батарей.

Потенциал применения солнечной энергии очень велик.

Преимущества и недостатки использования солнечной энергии

Преимущества использования солнечной энергии привели к тому, что уже сегодня мы видим ее использование в самых разных видах человеческой деятельности.

Главными преимуществами являются:

  • Неисчерпаемость энергии солнца в ближайшие 4 миллиарда лет;
  • Доступность данного вида энергии - именно с ним безопасно и эффективно сегодня работают и фермеры, и хозяева частных домов, и заводы-гиганты;
  • Бесплатность и экологическая чистота вырабатываемой энергии;
  • Перспектива развития данного источника энергии, который становится все более актуальным в силу роста цен на другие виды энергии;
  • Т.к. количество ежегодно вводимого в эксплуатацию оборудования и его надежность растет, уменьшается стоимость вырабатываемого киловатт часа солнечной энергии.

К условным недостаткам солнечной энергии можно отнести:

  • Основным недостатком солнечной энергии является прямая зависимость количества получаемого света и тепла от влияния таких факторов, как погода, время года или же суток. Логическим последствием в таком случае является необходимость аккумулировать энергию, что увеличивает стоимость системы;
  • Для производства элементов оборудования данного предназначения применяются редкие а, следовательно, дорогостоящие элементы.

Перспективы развития солнечной энергетики

Сегодня технологии, в которых используется энергия солнечного света, находят все более широкое применение. Самые распространенные - это солнечные батареи. Фотоэлектрические элементы успешно устанавливаются на различные виды транспорта - начиная от электромобилей и заканчивая самолетами. Японцы практикуют установку их на поезда.

Успешно функционируя, одна из европейских гелиоэлектростанций обеспечивает все потребности Ватикана. Крупнейшая станция в Калифорнии, источником для которой является солнечная энергия (фото дают представления о масштабах), уже сейчас обеспечивает штат своей круглосуточной работой.

Внедрение таких технологий сталкивается с сопротивлением со стороны лидеров углеводородной отрасли - ведь альтернативные источники в энергетике могут в скором времени вытеснить их представителей с лидирующих позиций.

Если говорить о прямом преобразовании, то наибольшее распространение получили такие устройства преобразования солнечной энергии как тепловые трубы (солнечные коллекторы) и батареи солнечных фотоэлементов .

Экономика солнечной установки

При рассмотрении возможности установки солнечной электростанции основное внимание уделяют экологическим, а экономическим аспектам. Звучат они следующим образом:

  1. Какова стоимость солнечной установки?
  2. Каков срок ее окупаемости?
  3. Достаточное ли количество электроэнергии будет генерировать установка?

Целесообразно рассматривать небольшие электростанции мощностью до 50 кВт. Установки большей мощности применяют преимущественно на промышленных объектах.

Достаточное ли количество электроэнергии будет генерировать домашняя солнечная электростанция?

Для ответа на третий вопрос, перед началом проектирования солнечной установки определяет профиль энергопотребления дома. Его можно записать установив на объекте счетчик электроэнергии с функцией сохранения текущих параметров: напряжения сети, потребляемого тока, текущей потребляемой мощности, частоты. Через месяц, вы можете оценить свой профиль потребления со средними, максимальными и минимальными значениями параметров.

Если такой прибор отсутствует, то профиль энергопотребления можно оценить так: потребуется записать все приборы, которые могут использоваться в доме и смоделировать возможные варианты их ежедневного использования. После этого, вооружившись калькулятором, вы сможете рассчитать суточное потребление электричества и пиковые значения мощности.

Существенную роль играет регион, где расположено здание. Энергия, достигающая поверхности Земли, в зависимости от региона, может изменяться от более, чем 5 кВтч/м 2 /день до 1,5 кВтч/м 2 /день и менее.

Если максимальное потребление приходится на светлое время суток, то для обеспечения достаточности генерируемого электричества нужно разделить максимальную потребляемую мощность на мощность одной панели солнечных элементов. Тип и характеристики панелей известны из каталогов производителей. Нужно учитывать, что характеристики солнечных панелей приведены при их максимальной освещенности - поправка на региональный коэффициент обязательна. Зимний период, когда батареи покрыты снегом не учитывается.

Такой расчет не учитывает следующую особенность: В течении дня, установка будет всегда генерировать избыточное количество энергии , а ночью, по понятным причинам, генерация будет равна 0.

Аккумуляторные батареи с одной стороны увеличивают общую стоимость системы, с другой стороны, позволяют уменьшить количество панелей солнечных элементов за счет накопления энергии в периоды меньшего энергопотребления.

Для расчета банка АКБ нужно ответить на следующие вопросы:

  • Предполагается ли система полностью автономной?
  • В случае, если система не автономна, то какой максимальный возможный срок перерывов в электроснабжении.

Максимальное потребление в кВт часах умножается на количество часов без основного источника (нужно учитывать, что в момент отключения солнца может и не быть). На основе этих данных можно рассчитать емкость банка АКБ. Разрядка АКБ до 0 сокращает срок их службы, поэтому в расчете вводят коэффициент показателя максимального разряда, например, он может быть 50, 40 или 30 %. Чем меньше максимальный показатель разряда, тем большее количество АКБ потребуется.

Стоимость установки солнечной генерации

Основные составляющие оборудования системы распределяются по стоимости в следующем процентном соотношении (условно):

  • Инвертор и система управления - 15-40%;
  • Солнечные панели и MPPT контроллеры - 20-40%;
  • Банк АКБ - 30%.

Стоимость солнечных панелей и АКБ будет идентична для систем всех производителей, существенные отличия имеются только в стоимости оборудования инвертора с системой управления и MPPT контроллера.

Разница в цене достигает более 200%, в зависимости от производителя. Это обусловлено не только «брендом», но и возможностями системы, например, удобство в управлении, возможность удаленного доступа, максимальная нагрузка и устойчивость к 2х-3х кратным перегрузкам, возможность частичного отключения нагрузки и т.д.

Каждое конечное техническое решение будет немного отличаться от других из-за того, что все люди используют разную бытовую технику в разное время суток. Идеальной комбинации оборудования, даже на заданную мощность не существует.

В качестве ориентировочной стоимости функциональной солнечной установки в загородный дом с учетом резервирования части мощности можно грубо ориентироваться на цифры 700-1800 USD/кВт в зависимости от производителя оборудования.

Сроки окупаемости установки солнечной генерации

Если хозяева условно выезжают на дачу только на выходные, и при этом в доме отсутствуют потребители, которые работают ежедневно, то, скорее всего, система будет окупаться не менее 10-15 лет, при текущих тарифах на электроэнергию.

При постоянном проживании, сроки окупаемости сократятся до 6-10 лет.

Положительная сторона медали - собственник такого дома получает стабильный источник электроснабжения и не зависит от обрывов ЛЭП или перепада мощностей. Все сидят без света, а вы - со светом, охранные системы функционируют, не нужно вручную открывать гараж и т.п.

Можно предположить, что развитие частного электротранспорта позволит сократить срок окупаемости солнечной установки для домохозяйств. Владелец такого автомобиля будет бесплатно «заправлять» его от собственной крыши .

Срок окупаемости зависит от полноты использования электроэнергии. Если сооружение использует 100% от генерации и при этом подключено к центральной сети электроснабжения, то в общем случае, отсутствует необходимость установки банка АКБ. Расчетный срок полной окупаемости такой установки составит 3-5 лет, а в жарких регионах еще меньше.

Дополнительная выгода образуется из-за того, что днем владелец НЕ ПЛАТИТ по дневному тарифу, а ночью ПЛАТИТ по ночному.

Такими быстро окупаемыми объектами могут быть любые энергозатратные производства с пустой плоской крышей, торгово-развлекательные и спортивные центры и паркинги при них, холодильные комплексы и т.п.

Удивительно, но подобные решения, позволяющие существенно снизить эксплуатационные затраты, до сих пор никак не используется владельцами объектов недвижимости.

В обозримом будущем, с развитием солнечной энергетики, все большее число владельцев зданий станут использовать чистую энергию взамен углеводородного сырья.

Исследование выполнено при поддержке Российского научного фонда (РНФ), его результаты опубликованы в международном журнале Frontiers in Chemistry. Подробнее .

В Ульяновской области построят завод по производству солнечных панелей

В январе во время рабочего визита в Китай делегация с губернатором Ульяновской области посетила предприятие технологического партнера австрийской компании Green Source для ознакомления с продукцией компании и обсуждения предстоящего строительства завода по производству солнечных панелей на территории Ульяновской области. Договоренность о строительстве такого завода была достигнута с австрийскими компаниями еще в прошлом году.

"В конце 2018 года мы договорились с австрийскими компаниями о строительстве в Ульяновской области предприятия по производству фотоэлектрических модулей для солнечных электростанций с использованием перспективной технологии", - сообщил губернатор Морозов 19 января на своей странице в фейсбуке.

2018

Четыре солнечные электростанции мощностью 100 МВт будут работать в Бурятии к 2022 году

Четыре солнечные электростанции (СЭС) общей мощностью 100 МВт будут работать в Бурятии к 2022 году. Об этом сообщил в понедельник и.о. министра по развитию транспорта, энергетики и дорожного хозяйства Алексей Назимов, выступая на заседании Совета по науке при главе Бурятии Алексее Цыденове .

Владельцам солнечных батарей на домах разрешат продавать электричество

Выкупать электроэнергию обяжут местные сбытовые компании по средней цене, пояснили в пресс-службе министерства. Ориентиром станет стоимость энергии у местных крупных электростанций. Владельцам частных домов в районах, не имеющих доступа к единой электросети России или же не включенных в ценовые зоны европейской части РФ и Урала с Сибирью (к примеру, Калининградская область и Дальний Восток) ее разрешат продавать по регулируемому ФАС тарифу. Претендовать на гарантированный выкуп энергии смогут установки не мощнее 15 кВт.

Не исключено, что владельцам ветряков и солнечных панелей в частных домах также установят налоговые льготы. Их доход от продажи лишней электроэнергии в размере до 150 тыс. руб. в год могут освободить от НДФЛ. Соответствующий вопрос рассматривается в правительстве.

Т Плюс начинает строительство крупнейших в России солнечных станций

- Развитие "зеленой" энергетики – ключевое направление работы Правительства области по освоению альтернативных видов топлива и сохранению окружающей среды. В области уже работают пять солнечных электростанций. Крупнейшая из них построена в Орске компанией "Т Плюс". С пуском второй очереди ее мощность возросла до 40 мегаватт. Солнечные электростанции действуют в Переволоцком, Грачевском, Красногвардейском, Соль-Илецком районах, – сказал Юрий Берг. – Сегодня мы делаем важный шаг вперед – начинаем строительство еще двух объектов альтернативной энергетики. Наша задача – укрепить передовые позиции Оренбургской области в развитии альтернативной энергетики. Мы эту задачу выполним, и к 2020 году мощность всех солнечных электростанций Оренбуржья составит более 200 мегаватт. Сегодня экологический аспект приобретает решающее значение для определения качества и уровня комфортности жизни человека. Это является приоритетом президентской политики. Развитие альтернативной энергетики – это взгляд в будущее, – констатировал глава региона.

2017

Итоги развития солнечной энергетики за год

Первый заместитель Министра энергетики РФ Текслер Алексей Леонидович выступил в январе 2018 года на министерском круглом столе "Инновации для трансформации энергетики: как электротранспорт/электромобили изменяют энергосистему", который прошел в рамках восьмого заседания Ассамблеи IRENA.

Алексей Текслер рассказал участникам дискуссии о развитии ВИЭ в России . По его словам, совсем недавно в России, кроме большой гидроэнергетики, не было компетенций в сфере ВИЭ и за несколько лет был сделан большой шаг вперед .

"Главный итог 2017 года, который я готов констатировать – возобновляемая энергетика в России состоялась как отрасль", - подчеркнул замглавы.

Практически с нуля в России создана своя индустрия в солнечной энергетике, от исследований до производства солнечных панелей и строительства генерирующих станций. За 2017 год было построено больше мощностей возобновляемых источников энергии, чем за предыдущие два года. В 2015-2016 годах в России были введены 130 МВт ВИЭ, а в 2017 году построено 140 МВт, из них более 100 МВт солнечные электростанции, а 35 МВт – первый крупный ветропарк , запуск которого состоится в ближайшее время.

В числе ключевых достижений Первый заместитель Министра энергетики отметил также запуск производства солнечных панелей нового поколения на основе отечественной гетероструктурной технологии. Россия стала производить модули с КПД выше 22%, которые по этому показателю входят в мировую тройку лидеров по эффективности в серийном производстве. В этом году планируется увеличить мощность производства завода со 160 МВт до 250 МВт.

Алексей Текслер выразил уверенность в том, что, как и в солнечной энергетике, в ближайшие три года будет создана индустрия ветровой энергетики . Уже за 2016-2017 гг. в российскую ветроэнергетику пришли крупные российские и иностранные инвесторы, которые взяли обязательства по развитию технологической и производственной базы в России.

В Башкортостане введена в эксплуатацию Исянгуловская солнечная электростанция

В Зианчуринском районе Республики Башкортостан осенью 2017 года введена в эксплуатацию Исянгуловская солнечная электростанция (СЭС) мощностью 9 МВт.

Инвестором и генеральным подрядчиком проекта выступают структуры группы компаний "Хевел " (совместное предприятие Группы компаний "Ренова " и АО РОСНАНО). К строительству также были привлечены местные подрядные организации. После завершения всех регламентных процедур станция начнет плановые поставки электроэнергии в сеть. Инвестиции в строительство станции составили более 1,5 млрд рублей.

В 2015-2016 гг. в Республике Башкортостан были построены и введены в эксплуатацию Бугульчанская СЭС общей мощностью 15 МВт, а также Бурибаевская СЭС мощностью 20 МВт. С момента выхода на оптовый рынок электроэнергии и мощности станции выработали более 40 ГВт*ч чистой электроэнергии.

С вводом Исянгуловской СЭС установленная мощность солнечной генерации в регионе достигла 44 МВт. Новый объект стал третьим из пяти, которые "Хевел" планирует построить в Башкортостане в ближайшие годы. Суммарная мощность всех СЭС в регионе составит 64 МВт, а общий объём инвестиций оценивается более чем в 6 млрд рублей.

Ученые нашли способ повышения эффективности солнечных батарей

Российские и швейцарские сследователи изучили влияние на структуру и производительность солнечных батарей изменения соотношения компонентов, из которых формируется светопоглощающий слой перовскитной солнечной ячейки. Результаты работы опубликованы в журнале Journal of Physical Chemistry C .

Впервые органо-неорганические перовскиты были разработали пять лет назад, но по КПД они уже обогнали наиболее распространенные и более дорогие кремниевые солнечные элементы. В структуре перовскитов находятся кристаллические соединения, в котором располагаются молекулы растворителя исходных компонентов. Растворенные компоненты, выпадая из раствора, образуют пленку, на которой растут кристаллы перовскита. Ученые выделили и описали три промежуточных соединения, которые являются кристаллосольватами одного из двух растворителей, наиболее часто используемых при создании перовскитных солнечных батарей. Для двух соединений ученые впервые установили кристаллическую структуру.

«Мы выяснили, что ключевым фактором, определяющим функциональные свойства перовскитного слоя, является образование промежуточных соединений, поскольку кристаллиты перовскита наследуют форму промежуточных соединений. Это, в свою очередь, влияет на морфологию пленки и эффективность солнечных батарей. Это особенно важно при получении тонких пленок перовскита, поскольку игольчатая или нитевидная форма кристаллов приведет к тому, что образованная пленка будет несплошной, а это значительно снизит КПД такой солнечной ячейки», - отметил руководитель исследования Алексей Тарасов.

Дополнительно авторы исследовали термическую стабильность полученных соединений и с помощью квантово-химического моделирования рассчитали энергию их образования. Также авторы выяснили, что кристаллическая структура промежуточного соединения задает форму образующихся кристаллов перовскита, что определяет структуру светопоглощающего слоя. Эта структура, в свою очередь, влияет на производительность получаемой солнечной батареи.

Исследование было проведено научными сотрудниками МГУ в сотрудничестве с учеными Курчатовского центра синхротронного излучения, Российского университета дружбы народов , СПбГУ и Федеральной политехнической школы Лозанны в Швейцарии .

Завод Вексельберга начинает выпуск солнечных батарей на экспорт

«Хевел» в Оренбургской и Астраханской областях

В октябре губернатор Астраханской области Александр Жилкин и генеральный директор ГК «Хевел» Шахрай Игорь подписали двухстороннее соглашение, предусматривающее постройку и введение в эксплуатацию трёх сетевых солнечных электростанций.

В течение двух лет на территории региона появятся мощности для выработки 135 МВт энергии с перспективами увеличения до 160 МВт. Инвестиционная стоимость проекта – 15 млрд рублей. Планируется, что уже к концу года одну электростанцию достроят и введут в эксплуатацию. СЭС принесут в казну области дополнительные налоговые поступления. По словам Игоря Шахрая, за каждые 10 МВт энергии в год будет отчисляться 100 млн рублей налогов. Гендиректор ООО «Хевел» отметил, что астраханская земля – самая солнечная на юге России . Кроме того, в регионе имеется наработанная схема для подключения к основным энергосетям. В дополнение к этому власти всячески поддерживают и стремятся развивать направление чистой энергетики в области. Всего до конца года в регионе будут введены 6 СЭС суммарной мощностью 90 МВт.

2015 год

Мировая солнечная энергетика вплотную подходит к той стадии, когда производство электроэнергии с помощью Солнца начинает окупаться обычным, не повышенным тарифом, стоимость материалов и величина необходимых инвестиций резко падают, так как технологии развиваются и начинает сказываться эффект объема (много производить дешевле, чем мало). В сравнении с 2014 годом объем выработанной энергии на основе СЭС в мире вырос на треть. На конец 2015 года совокупная установленная мощность фотоэлектрических солнечных установок в мире составила 227 ГВт, за год установленные мощности солнечных электростанций увеличились в 2 раза. Если раньше мировым лидером по развитию возобновляемой энергетики была Европа , то в прошлом году пальму первенства перехватил Китай .

SoftBank построит в Саудовской Аравии крупнейшую солнечную электростанцию

Соответствующий меморандум о намерениях подписали в Нью-Йорке наследный принц Саудовской Аравии Мухаммед бин Сальман Аль Сауд и генеральный директор SoftBank Масаеши Сон. Принц находится в с трехнедельным официальным визитом, отмечает телеканал.

Планируемая мощность каскада солнечных батарей в 200 ГВт - это в разы больше, чем у любой существующей солнечной электростанции. Для сравнения, пиковая мощность расположенной в Калифорнии Topaz Solar Farm, одной из крупнейших подобных электростанций, составляет около 550 МВт. Энергию там аккумулируют 9 млн тонкослойных фотоэлектрических модулей.

Голландский стартап Oceans of Energy, специализирующийся на разработке плавучих систем по производству возобновляемой электроэнергии, объединился с пятью крупными компаниями, чтобы построить первую в мире солнечную электростанцию, дрейфующую в открытом море. "Такие электростанции уже работают на водоемах в материковой части разных стран. Но на море их никто не строил - это чрезвычайно трудная задача. Приходится иметь дело с огромными волнами и другими разрушительными силами природы. Однако, мы убеждены, что объединив свои знания и опыт, справимся с этим проектом", - рассказал глава Oceans of Energy Аллард ван Хоекен.
По предварительным расчетам, плавучая электростанция будет на 15% эффективнее существующих установок. Выбирать наиболее подходящие солнечные модули будет Центр исследований энергетики Нидерландов (ECN). Его специалисты считают, что это для проекта можно использовать стандартные солнечные панели, которые работают и на наземных солнечных станциях. "Посмотрим, как они поведут себя в морской воде и в неблагоприятных погодных условиях", - отметил представитель ECN Ян Кроон.

Представители консорциума подчеркивают, что плавучую солнечную электростанцию можно установить прямо между морскими ветровыми турбинами. Там более спокойные волны и уже проведены все линии электропередачи. В ближайшие три года консорциум будет работать над прототипом при финансовой поддержке государственного Агентства предпринимательства Нидерландов. А Утрехтский университет предоставит стартапу материалы своих исследований.

Стоимость солнечной энергии в Австралии упала на 44% с 2012 года

Такое увлечение возобновляемой энергии привело к тому, что люди действительно начали платить меньше за электричество. Плюсом к этому также стало то, что стоимость самой электроэнергии снизилась. С 2012 года издержки на установку и эксплуатацию солнечных панелей упали почти на половину.

В 2017 году в стране частные домовладельцы и бизнес установили панелей суммарной мощностью 1,05 ГВт. Такую оценку дает ведомство, отвечающее за вопросы чистой энергетики в стране. Власти говорят, что это рекордный показатель за всю историю. Сообщается, что в начале этого десятилетия рост возобновляемой энергетики был связан с выгодными субсидиями и налоговыми предложениями, но рост 2017 отличается: жители страны решили таким образом бороться с повышающимися тарифами на электроэнергию, и движение стало массовым.

По прогнозам BNEF, Австралия станет мировым лидером по внедрению солнечных панелей. К 2040 году 25% потребности страны в электроэнергии будет покрываться солнечными панелями на крышах. Это станет возможным из-за того, что сегодня срок окупаемости таких решений сократился до минимального с 2012 года. Пока это не значит, что традиционные электростанции Австралии уходят в прошлое, но люди становятся свободнее в вопросах обеспечения себя электроэнергией.

2017

Южная Корея в 5 раз увеличит солнечную генерацию к 2030 году

Министр торговли, промышленности и энергетики Южной Кореи обнародовал план правительства по пятикратному увеличению выработки солнечной энергии к 2030 году .

Это заявление было сделано вскоре после того, как избранный в этом году президент Мун Чжэ Ин пообещал прекратить государственную поддержку строительства новых атомных электростанций и взять курс на экологически чистые источники электроэнергии. Правительство уже отменило строительство шести ядерных реакторов в Южной Корее.

Всего страна планирует получать к 2030 пятую часть вырабатываемого электричества из возобновляемых источников. В прошлом году этот показатель составлял 7%. Для этого к назначенному сроку планируется добавить 30,8 ГВт солнечных мощностей и 16,5 ГВ ветровых. Дополнительная энергия будет поступать из крупнейших проектов, а также от частных домохозяйств и малого бизнеса, заявил министр Пайк Унгю. "Мы фундаментально изменим путь развития возобновляемой энергетики, создав условия, при которых граждане легко смогут принять участие в торговле возобновляемой энергией", - сказал он.

Это значит, что к 2022 году примерно 1 из 30 домохозяйств должно быть оборудовано солнечными панелями, сообщает Clean Technica.

Тем не менее, пока Южная Корея занимает пятое место в мире по использованию атомной энергии. В стране 24 действующих реактора, обеспечивающих приблизительно треть потребностей страны в электричестве.

BP инвестировала $200 млн в солнечную энергетику

Пустыня Атакама в Чили- одно из самых солнечных и сухих мест на планете. Логично, что именно там решили построить крупнейшую в Латинской Америке солнечную электростанцию El Romero. Гигантские солнечные панели покрывают 280 га площади. Ее пиковая мощность - 246 МВт, а в год электростанция генерирует 493 ГВт-ч энергии - достаточно, чтобы обеспечить электричеством 240 000 домов.

Удивительно, но всего пять лет назад в Чили почти не использовали возобновляемые источники энергии. Страна была зависима от соседей-поставщиков энергоносителей, которые завышали цены и заставляли чилийцев страдать от непомерных счетов за электричество. Однако, именно отсутствие ископаемого топливо привело к серьезному потоку инвестиций в возобновляемые источники, особенно в солнечную энергетику.

Сейчас Чили производит практически самую дешевую солнечную энергию в мире. Компании надеются, что страна станет "Саудовской Аравией для Латинской Америки". Чили уже присоединился к Мексике и Бразилии в первой десятке стран-производителей возобновляемой энергетики, и теперь собирается стать лидером при переходе на "чистую" энергию в Латинской Америке.

"Правительство Мишель Бачелет совершило тихую революцию, - уверен социолог Еугенио Тирони. - Ее заслугу в переходе на возобновляемые источники энергии трудно переоценить, и это определит фактор развития страны на долгие годы".

Теперь, когда олигополистический рынок энергетики в Чили открыт для конкурентной борьбы, правительство поставило новую цель: к 2025 году 20% всей энергии страны должно поступать из возобновляемых источников. А к 2040 году Чили собирается полностью перейти на "чистую" энергетику. Даже экспертам это не кажется утопией, поскольку солнечные электростанции страны при ныне существующих технологиях производят в два раза более дешевое электричество, чем угольные электростанции. Цены на солнечную энергию упали на 75%, достигнув рекордных 2,148 центов за киловатт-час.

Компании-производители сталкиваются с другой проблемой: слишком дешевое электричество не приносит особой прибыли, а содержание и замена солнечных панелей стоит недешево. "Правительству придется строить долгосрочные стратегии, чтобы чудо не стало кошмаром", - заявил генеральный директор испанского конгломерата Acciona Хосе Игнасио Эскобар.

Google полностью переходит на солнечную и ветровую энергию

Компания стала крупнейшим в мире корпоративным покупателем возобновляемой энергии, достигнув суммарной мощности 3 ГВт. Общие инвестиции Google в сферу чистой энергетики достигли $3,5 млрд, пишет в ноябре 2017 года Electrek .

Google официально переходит на стопроцентное использование солнечной и ветряной энергии. Компания подписала контракт с тремя ветровыми электростанциями: Avangrid в Южной Дакоте, EDF в Айове и GRDA в Оклахоме, суммарная мощность которых составляет 535 МВт. Теперь офисы Google по всему миру будут потреблять 3 ГВт возобновляемой энергии.

Общие инвестиции компании в сферу энергетики достигли $3,5 млрд, и 2/3 из них приходится на объекты в . Такой интерес к "чистым" источникам связан, в первую очередь, с падением стоимости солнечной и ветряной энергии на 60-80% за последние годы.

Впервые Google подписал договор о сотрудничестве с солнечной фермой в Айове мощностью 114 МВт еще в 2010 году. К ноябрю 2016 года компания уже была участником 20 проектов по возобновляемой энергетике. Полностью перейти на энергию солнца и ветра она собиралась еще в декабре 2016 года. Сейчас Google самый крупный в мире корпоративный покупатель возобновляемой энергии.

В Швеции изобрели умные стекла для окон

Ученые давно исследуют данную область и ищут применение разработке. В современном мире такая технология актуальна, так как теплопотери домов из-за окон составляют примерно 20%. Ученые считают, что их изобретение сможет также применяться для теплоизоляции различных объектов.

В Иране деревни продают электроэнергию государству

На осень 2017 года «зеленых» деревень в ИРИ более 200. Ожидается, что к весне 2018 года их число достигнет 300. "Иран сегодня сообщает", что в некоторых населенных пунктах страны солнечные батареи стоят уже десять лет. Отмечается, что самые большие объемы энергии из солнца производят в провинциях Керман, Хузестан и Лурестан .

Изначально появление альтернативных источников энергии в деревнях Ирана обуславливалось невозможностью доставки в них электричества из городов. Теперь собственную энергию они продают Министерству энергетики ИРИ. Планируется выработать законодательные нормы, согласно которым закупки электроэнергии в деревнях станут постоянными.

К 2030 году Иран рассчитывает производить 7500 МВт «зеленой» энергии, сегодня этот показатель всего 350 МВт. Однако у страны есть хорошие перспективы для развития солнечной энергетики, потому что на 2/3 территории солнце светит 300 дней в году.

Британские ученые изобрели стеклянные кирпичи с солнечными батареям

Группа ученых Эксетерского университета в Англии разработала стеновые блоки из стекла со встроенными солнечными батареями. Об этом пишет архитектурный портал Archdaily. Блоки можно использовать при строительстве домов вместо обычных кирпичей.

Стройматериал назвали «Solar Squared» («Солнечная квадратная плитка»). Как показали тесты в лаборатории университета, помимо генерации электроэнергии блоки обладают и рядом других полезных свойств. В частности, построенные таким образом стены хорошо пропускают в здание солнечный свет и сохраняют тепло в помещениях.

Для продвижения продукта ученые создали инновационную компанию The Build Solar. В настоящее время ведется поиск инвесторов. Вывод «солнечной плитки» на рынок предварительно запланирован на 2018 год.

В Дубае запустили крупнейшую в мире солнечной электростанции

Установка каждой гелиопанели обошлась в 6 тыс. евро, включая аренду на год, ремонт и техническое оборудование. Планируется, что солнечные батареи будут работать на остановках общественного транспорта около года, после чего будут переданы школам и детсадам.

По словам Петра Свитальского, главы делегации ЕС в Армении, Евросоюз заинтересован в развитии альтернативной энергетики в стране. Остановку с гелиопанелями он назвал «солнечной остановкой Евросоюза ».